Your browser doesn't support javascript.
loading
MicroRNA and metabolomics signatures for adrenomyeloneuropathy disease severity.
Turk, Bela Rui; Poisson, Laila Marie; Nemeth, Christina Linnea; Goodman, Jordan; Moser, Ann B; Jones, Richard Owen; Fatemi, Ali; Singh, Jaspreet.
Afiliación
  • Turk BR; Moser Center for Leukodystrophies, Kennedy Krieger Institute Johns Hopkins Medical Institutions Baltimore Maryland USA.
  • Poisson LM; Department of Public Health Sciences Henry Ford Health System Detroit Michigan USA.
  • Nemeth CL; Moser Center for Leukodystrophies, Kennedy Krieger Institute Johns Hopkins Medical Institutions Baltimore Maryland USA.
  • Goodman J; Moser Center for Leukodystrophies, Kennedy Krieger Institute Johns Hopkins Medical Institutions Baltimore Maryland USA.
  • Moser AB; Moser Center for Leukodystrophies, Kennedy Krieger Institute Johns Hopkins Medical Institutions Baltimore Maryland USA.
  • Jones RO; Moser Center for Leukodystrophies, Kennedy Krieger Institute Johns Hopkins Medical Institutions Baltimore Maryland USA.
  • Fatemi A; Moser Center for Leukodystrophies, Kennedy Krieger Institute Johns Hopkins Medical Institutions Baltimore Maryland USA.
  • Singh J; Department of Neurology Henry Ford Health System Detroit Michigan USA.
JIMD Rep ; 63(6): 593-603, 2022 Nov.
Article en En | MEDLINE | ID: mdl-36341174
ABSTRACT
Adrenomyeloneuropathy (AMN), the slow progressive phenotype of adrenoleukodystrophy (ALD), has no clinical plasma biomarker for disease progression. This feasibility study aimed to determine whether metabolomics and micro-RNA in blood plasma provide a potential source of biomarkers for AMN disease severity. Metabolomics and RNA-seq were performed on AMN and healthy human blood plasma. Biomarker discovery and pathway analyses were performed using clustering, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and regression against patient's clinical Expanded Disability Status Score (EDSS). Fourteen AMN and six healthy control samples were analyzed. AMN showed strong disease-severity-specific metabolic and miRNA clustering signatures. Strong, significant clinical correlations were shown for 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-HOCA) (r 2 = 0.83, p < 0.00001), dehydroepiandrosterone sulfate (DHEA-S; r 2 = 0.82, p < 0.00001), hypoxanthine (r 2 = 0.82, p < 0.00001), as well as miRNA-432-5p (r 2 = 0.68, p < 0.00001). KEGG pathway comparison of mild versus severe disease identified affected downstream systems GAREM, IGF-1, CALCRL, SMAD2&3, glutathione peroxidase, LDH, and NOS. This feasibility study demonstrates that miRNA and metabolomics are a source of potential plasma biomarkers for disease severity in AMN, providing both a disease signature and individual markers with strong clinical correlations. Network analyses of affected systems implicate differentially altered vascular, inflammatory, and oxidative stress pathways, suggesting disease-severity-specific mechanisms as a function of disease severity.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: JIMD Rep Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: JIMD Rep Año: 2022 Tipo del documento: Article