Your browser doesn't support javascript.
loading
A MoS2 Hafnium Oxide Based Ferroelectric Encoder for Temporal-Efficient Spiking Neural Network.
Chien, Yu-Chieh; Xiang, Heng; Shi, Yufei; Duong, Ngoc Thanh; Li, Sifan; Ang, Kah-Wee.
Afiliación
  • Chien YC; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
  • Xiang H; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
  • Shi Y; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
  • Duong NT; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
  • Li S; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
  • Ang KW; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
Adv Mater ; 35(2): e2204949, 2023 Jan.
Article en En | MEDLINE | ID: mdl-36366910
ABSTRACT
Spiking neural network (SNN), where the information is evaluated recurrently through spikes, has manifested significant promises to minimize the energy expenditure in data-intensive machine learning and artificial intelligence. Among these applications, the artificial neural encoders are essential to convert the external stimuli to a spiking format that can be subsequently fed to the neural network. Here, a molybdenum disulfide (MoS2 ) hafnium oxide-based ferroelectric encoder is demonstrated for temporal-efficient information processing in SNN. The fast domain switching attribute associated with the polycrystalline nature of hafnium oxide-based ferroelectric material is exploited for spike encoding, rendering it suitable for realizing biomimetic encoders. Accordingly, a high-performance ferroelectric encoder is achieved, featuring a superior switching efficiency, negligible charge trapping effect, and robust ferroelectric response, which successfully enable a broad dynamic range. Furthermore, an SNN is simulated to verify the precision of the encoded information, in which an average inference accuracy of 95.14% can be achieved, using the Modified National Insitute of Standards and Technology (MNIST) dataset for digit classification. Moreover, this ferroelectric encoder manifests prominent resilience against noise injection with an overall prediction accuracy of 94.73% under various Gaussian noise levels, showing practical promises to reduce the computational load for the neural network.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Molibdeno Tipo de estudio: Guideline Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Molibdeno Tipo de estudio: Guideline Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article