Reanalysis of Trichloroethylene and Tetrachloroethylene Metabolism to Glutathione Conjugates Using Human, Rat, and Mouse Liver in Vitro Models to Improve Precision in Risk Characterization.
Environ Health Perspect
; 130(11): 117009, 2022 11.
Article
en En
| MEDLINE
| ID: mdl-36445294
BACKGROUND: Both trichloroethylene (TCE) and tetrachloroethylene (PCE) are high-priority chemicals subject to numerous human health risk evaluations by a range of agencies. Metabolism of TCE and PCE determines their ultimate toxicity; important uncertainties exist in quantitative characterization of metabolism to genotoxic moieties through glutathione (GSH) conjugation and species differences therein. OBJECTIVES: This study aimed to address these uncertainties using novel in vitro liver models, interspecies comparison, and a sensitive assay for quantification of GSH conjugates of TCE and PCE, S-(1,2-dichlorovinyl)glutathione (DCVG) and S-(1,2,2-trichlorovinyl) glutathione (TCVG), respectively. METHODS: Liver in vitro models used herein were suspension, 2-D culture, and micropatterned coculture (MPCC) with primary human, rat, and mouse hepatocytes, as well as human induced pluripotent stem cell (iPSC)-derived hepatocytes (iHep). RESULTS: We found that, although efficiency of metabolism varied among models, consistent with known differences in their metabolic capacity, formation rates of DCVG and TCVG generally followed the patterns human≥rat≥mouse, and primary hepatocytes>iHep. Data derived from MPCC were most consistent with estimates from physiologically based pharmacokinetic models calibrated to in vivo data. DISCUSSION: For TCE, the new data provided additional empirical support for inclusion of GSH conjugation-mediated kidney effects as critical for the derivation of noncancer toxicity values. For PCE, the data reduced previous uncertainties regarding the extent of TCVG formation in humans; this information was used to update several candidate kidney-specific noncancer toxicity values. Overall, MPCC-derived data provided physiologically relevant estimates of GSH-mediated metabolism of TCE and PCE to reduce uncertainties in interspecies extrapolation that constrained previous risk evaluations, thereby increasing the precision of risk characterizations of these high-priority toxicants. https://doi.org/10.1289/EHP12006.
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Tetracloroetileno
/
Tricloroetileno
/
Células Madre Pluripotentes Inducidas
Tipo de estudio:
Etiology_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Environ Health Perspect
Año:
2022
Tipo del documento:
Article