Phase Transition of MoTe2 Controlled in van der Waals Heterostructure Nanoelectromechanical Systems.
Small
; 19(5): e2205327, 2023 Feb.
Article
en En
| MEDLINE
| ID: mdl-36461691
This work reports experimental demonstrations of reversible crystalline phase transition in ultrathin molybdenum ditelluride (MoTe2 ) controlled by thermal and mechanical mechanisms on the van der Waals (vdW) nanoelectromechanical systems (NEMS) platform, with hexagonal boron nitride encapsulated MoTe2 structure residing on top of graphene layer. Benefiting from very efficient electrothermal heating and straining effects in the suspended vdW heterostructures, MoTe2 phase transition is triggered by rising temperature and strain level. Raman spectroscopy monitors the MoTe2 crystalline phase signatures in situ and clearly records reversible phase transitions between hexagonal 2H (semiconducting) and monoclinic 1T' (metallic) phases. Combined with Raman thermometry, precisely measured nanomechanical resonances of the vdW devices enable the determination and monitoring of the strain variations as temperature is being regulated by electrothermal control. These results not only deepen the understanding of MoTe2 phase transition, but also demonstrate a novel platform for engineering MoTe2 phase transition and multiphysical devices.
Texto completo:
1
Base de datos:
MEDLINE
Idioma:
En
Revista:
Small
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2023
Tipo del documento:
Article