Your browser doesn't support javascript.
loading
Bio-based Polyurethane Based on a Dynamic Covalent Network with Damage Tolerance for Controlled Release of Fertilizers.
Yu, Zhen; Cheng, Dongdong; Gao, Bin; Yao, Yuanyuan; Liu, Chenghao; Li, Junyin; Wang, Chun; Xie, Jiazhuo; Zhang, Shugang; Li, Zhao; Yang, Yuechao.
Afiliación
  • Yu Z; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
  • Cheng D; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
  • Gao B; Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611-0570, United States.
  • Yao Y; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
  • Liu C; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
  • Li J; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
  • Wang C; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
  • Xie J; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
  • Zhang S; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
  • Li Z; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
  • Yang Y; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
ACS Appl Mater Interfaces ; 14(50): 56046-56055, 2022 Dec 21.
Article en En | MEDLINE | ID: mdl-36484480
ABSTRACT
Bio-based polyurethanes are promising for the controlled release of nutrients and fertilizers, but their toughness and plasticity need to be improved. We developed a smooth, dense, elastic, and indestructible bio-based polyurethane (BPU) coating with a nutrient controlled release ∼150% superior, a tensile strength ∼300% higher, and a toughness ∼1200% higher than those for the original BPU coating. Through a one-step reaction of soybean oil polyols (accounting for more than 60%), isocyanate, and benzil dioxime, the dynamic covalent network based on oxime-carbamate replaces part of irreversible covalent cross-linking. The dynamic fracture-bonding reaction in the modified coating BPU can effectively promote the hydrogen bond recombination and oxime-carbamate chain migration in the coating process, which avoids the structural defects caused by coating tear and fertilizer collision. This work provides a simple and versatile strategy for building controlled-release fertilizer coatings.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Poliuretanos / Fertilizantes Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Poliuretanos / Fertilizantes Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article