Your browser doesn't support javascript.
loading
Automated segmentation of lungs and lung tumors in mouse micro-CT scans.
Ferl, Gregory Z; Barck, Kai H; Patil, Jasmine; Jemaa, Skander; Malamut, Evelyn J; Lima, Anthony; Long, Jason E; Cheng, Jason H; Junttila, Melissa R; Carano, Richard A D.
Afiliación
  • Ferl GZ; Preclinical & Translational PKPD, Genentech, South San Francisco, CA 94080, USA.
  • Barck KH; Department of Translational Imaging, Genentech, South San Francisco, CA 94080, USA.
  • Patil J; Department of Translational Imaging, Genentech, South San Francisco, CA 94080, USA.
  • Jemaa S; Genetic Science Group, Thermo Fisher Scientific, South San Francisco, CA 94080, USA.
  • Malamut EJ; Data, Analytics and Imaging, Product Development, Genentech, South San Francisco, CA 94080, USA.
  • Lima A; Preclinical & Translational PKPD, Genentech, South San Francisco, CA 94080, USA.
  • Long JE; Department of Translational Oncology, Genentech, South San Francisco, CA 94080, USA.
  • Cheng JH; ORIC Pharmaceuticals, South San Francisco, CA 94080, USA.
  • Junttila MR; Department of Translational Oncology, Genentech, South San Francisco, CA 94080, USA.
  • Carano RAD; ORIC Pharmaceuticals, South San Francisco, CA 94080, USA.
iScience ; 25(12): 105712, 2022 Dec 22.
Article en En | MEDLINE | ID: mdl-36582483
Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: IScience Año: 2022 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: IScience Año: 2022 Tipo del documento: Article