Your browser doesn't support javascript.
loading
Single-cell gene regulatory network prediction by explainable AI.
Keyl, Philipp; Bischoff, Philip; Dernbach, Gabriel; Bockmayr, Michael; Fritz, Rebecca; Horst, David; Blüthgen, Nils; Montavon, Grégoire; Müller, Klaus-Robert; Klauschen, Frederick.
Afiliación
  • Keyl P; Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany.
  • Bischoff P; Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany.
  • Dernbach G; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany.
  • Bockmayr M; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Berlin partner site, Germany.
  • Fritz R; Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany.
  • Horst D; BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
  • Blüthgen N; Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany.
  • Montavon G; Department of Pediatric Hematology and Oncolog, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
  • Müller KR; Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf Martinistr. 52, 20246 Hamburg, Germany.
  • Klauschen F; Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany.
Nucleic Acids Res ; 51(4): e20, 2023 02 28.
Article en En | MEDLINE | ID: mdl-36629274
The molecular heterogeneity of cancer cells contributes to the often partial response to targeted therapies and relapse of disease due to the escape of resistant cell populations. While single-cell sequencing has started to improve our understanding of this heterogeneity, it offers a mostly descriptive view on cellular types and states. To obtain more functional insights, we propose scGeneRAI, an explainable deep learning approach that uses layer-wise relevance propagation (LRP) to infer gene regulatory networks from static single-cell RNA sequencing data for individual cells. We benchmark our method with synthetic data and apply it to single-cell RNA sequencing data of a cohort of human lung cancers. From the predicted single-cell networks our approach reveals characteristic network patterns for tumor cells and normal epithelial cells and identifies subnetworks that are observed only in (subgroups of) tumor cells of certain patients. While current state-of-the-art methods are limited by their ability to only predict average networks for cell populations, our approach facilitates the reconstruction of networks down to the level of single cells which can be utilized to characterize the heterogeneity of gene regulation within and across tumors.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Redes Reguladoras de Genes / Aprendizaje Profundo / Análisis de Expresión Génica de una Sola Célula / Neoplasias Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nucleic Acids Res Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Redes Reguladoras de Genes / Aprendizaje Profundo / Análisis de Expresión Génica de una Sola Célula / Neoplasias Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nucleic Acids Res Año: 2023 Tipo del documento: Article