Your browser doesn't support javascript.
loading
Forecasting individual progression trajectories in Alzheimer's disease.
Maheux, Etienne; Koval, Igor; Ortholand, Juliette; Birkenbihl, Colin; Archetti, Damiano; Bouteloup, Vincent; Epelbaum, Stéphane; Dufouil, Carole; Hofmann-Apitius, Martin; Durrleman, Stanley.
Afiliación
  • Maheux E; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.
  • Koval I; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.
  • Ortholand J; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.
  • Birkenbihl C; Department of bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany.
  • Archetti D; Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 53115, Germany.
  • Bouteloup V; IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
  • Epelbaum S; Université de Bordeaux, CNRS UMR 5293, Institut des Maladies Neurodégénératives, Bordeaux, France.
  • Dufouil C; Centre Hospitalier Universitaire (CHU) de Bordeaux, pôle de neurosciences cliniques, centre mémoire de ressources et de recherche, Bordeaux, France.
  • Hofmann-Apitius M; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital Pitié-Salpêtrière, Institut de la mémoire et de la maladie d'Alzheimer (IM2A), center of excellence of neurodegenerative diseases (CoEN), department of Neurology, DMU Neurosciences, Paris, Fra
  • Durrleman S; Université de Bordeaux, CNRS UMR 5293, Institut des Maladies Neurodégénératives, Bordeaux, France.
Nat Commun ; 14(1): 761, 2023 02 10.
Article en En | MEDLINE | ID: mdl-36765056
The anticipation of progression of Alzheimer's disease (AD) is crucial for evaluations of secondary prevention measures thought to modify the disease trajectory. However, it is difficult to forecast the natural progression of AD, notably because several functions decline at different ages and different rates in different patients. We evaluate here AD Course Map, a statistical model predicting the progression of neuropsychological assessments and imaging biomarkers for a patient from current medical and radiological data at early disease stages. We tested the method on more than 96,000 cases, with a pool of more than 4,600 patients from four continents. We measured the accuracy of the method for selecting participants displaying a progression of clinical endpoints during a hypothetical trial. We show that enriching the population with the predicted progressors decreases the required sample size by 38% to 50%, depending on trial duration, outcome, and targeted disease stage, from asymptomatic individuals at risk of AD to subjects with early and mild AD. We show that the method introduces no biases regarding sex or geographic locations and is robust to missing data. It performs best at the earliest stages of disease and is therefore highly suitable for use in prevention trials.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Enfermedad de Alzheimer / Disfunción Cognitiva Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Enfermedad de Alzheimer / Disfunción Cognitiva Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article