Your browser doesn't support javascript.
loading
Quantum self-consistent equation-of-motion method for computing molecular excitation energies, ionization potentials, and electron affinities on a quantum computer.
Asthana, Ayush; Kumar, Ashutosh; Abraham, Vibin; Grimsley, Harper; Zhang, Yu; Cincio, Lukasz; Tretiak, Sergei; Dub, Pavel A; Economou, Sophia E; Barnes, Edwin; Mayhall, Nicholas J.
Afiliación
  • Asthana A; Department of Chemistry, Virginia Tech Blacksburg 24061 VA USA aasthana@vt.edu nmayhall@vt.edu.
  • Kumar A; Virginia Tech Center for Quantum Information Science and Engineering Blacksburg 24061 VA USA.
  • Abraham V; Theoretical Division, Los Alamos National Laboratory Los Alamos 87545 NM USA akumar1@lanl.gov.
  • Grimsley H; Department of Chemistry, University of Michigan Ann Arbor 48109 MI USA.
  • Zhang Y; Department of Chemistry, Virginia Tech Blacksburg 24061 VA USA aasthana@vt.edu nmayhall@vt.edu.
  • Cincio L; Virginia Tech Center for Quantum Information Science and Engineering Blacksburg 24061 VA USA.
  • Tretiak S; Theoretical Division, Los Alamos National Laboratory Los Alamos 87545 NM USA akumar1@lanl.gov.
  • Dub PA; Theoretical Division, Los Alamos National Laboratory Los Alamos 87545 NM USA akumar1@lanl.gov.
  • Economou SE; Theoretical Division, Los Alamos National Laboratory Los Alamos 87545 NM USA akumar1@lanl.gov.
  • Barnes E; Center for Integrated Nanotechnologies, Los Alamos National Laboratory Los Alamos 87545 NM USA.
  • Mayhall NJ; Chemistry Division, Los Alamos National Laboratory Los Alamos 87545 NM USA.
Chem Sci ; 14(9): 2405-2418, 2023 Mar 01.
Article en En | MEDLINE | ID: mdl-36873839
ABSTRACT
Near-term quantum computers are expected to facilitate material and chemical research through accurate molecular simulations. Several developments have already shown that accurate ground-state energies for small molecules can be evaluated on present-day quantum devices. Although electronically excited states play a vital role in chemical processes and applications, the search for a reliable and practical approach for routine excited-state calculations on near-term quantum devices is ongoing. Inspired by excited-state methods developed for the unitary coupled-cluster theory in quantum chemistry, we present an equation-of-motion-based method to compute excitation energies following the variational quantum eigensolver algorithm for ground-state calculations on a quantum computer. We perform numerical simulations on H2, H4, H2O, and LiH molecules to test our quantum self-consistent equation-of-motion (q-sc-EOM) method and compare it to other current state-of-the-art methods. q-sc-EOM makes use of self-consistent operators to satisfy the vacuum annihilation condition, a critical property for accurate calculations. It provides real and size-intensive energy differences corresponding to vertical excitation energies, ionization potentials and electron affinities. We also find that q-sc-EOM is more suitable for implementation on NISQ devices as it is expected to be more resilient to noise compared with the currently available methods.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2023 Tipo del documento: Article