Your browser doesn't support javascript.
loading
Kinetic modeling of xylonic acid production by Gluconobacter oxydans: effects of hydrodynamic conditions.
Liu, Xu; Ding, Chenrong; He, Tao; Zhu, Yafei; Sun, Liqun; Xu, Chaozhong; Gu, Xiaoli.
Afiliación
  • Liu X; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
  • Ding C; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
  • He T; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
  • Zhu Y; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
  • Sun L; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
  • Xu C; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China. xucz@njfu.edu.cn.
  • Gu X; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China. guxiaoli@njfu.edu.cn.
Bioprocess Biosyst Eng ; 46(6): 829-837, 2023 Jun.
Article en En | MEDLINE | ID: mdl-36952003
In this study, the synthesis of xylonic acid from xylose by Gluconobacter oxydans NL71 has been investigated. According to the relationship between oxygen transfer rate and oxygen uptake rate, three different kinetic models of product formation were established and the nonlinear fitting was carried out. The results showed that G. oxydans has critical dissolved oxygen under different strain concentrations, and the relationship between respiration intensity and dissolved oxygen conformed to the Monod equation [Formula: see text]. The maximum reaction rate per unit cell mass and the theoretical maximum specific productivity of G. oxydans obtained by the kinetic model are 0.042 mol/L/h and 6.97 g/gx/h, respectively. These results will assist in determining the best balance between the airflow rate and cell concentration in the reaction and improve the production efficiency of xylonic acid.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Gluconobacter oxydans Idioma: En Revista: Bioprocess Biosyst Eng Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Gluconobacter oxydans Idioma: En Revista: Bioprocess Biosyst Eng Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article