Your browser doesn't support javascript.
loading
Unusual double ligand holes as catalytic active sites in LiNiO2.
Huang, Haoliang; Chang, Yu-Chung; Huang, Yu-Cheng; Li, Lili; Komarek, Alexander C; Tjeng, Liu Hao; Orikasa, Yuki; Pao, Chih-Wen; Chan, Ting-Shan; Chen, Jin-Ming; Haw, Shu-Chih; Zhou, Jing; Wang, Yifeng; Lin, Hong-Ji; Chen, Chien-Te; Dong, Chung-Li; Kuo, Chang-Yang; Wang, Jian-Qiang; Hu, Zhiwei; Zhang, Linjuan.
Afiliación
  • Huang H; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
  • Chang YC; National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC.
  • Huang YC; Department of Physics, Tamkang University, New Taipei City, Taiwan, ROC.
  • Li L; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
  • Komarek AC; Max Planck Institute for Chemical Physics of Solids, Dresden, 01187, Germany.
  • Tjeng LH; Max Planck Institute for Chemical Physics of Solids, Dresden, 01187, Germany.
  • Orikasa Y; Department of Applied Chemistry, Ritsumeikan University, Kusatsu, Shiga, 535-8577, Japan.
  • Pao CW; National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC.
  • Chan TS; National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC.
  • Chen JM; National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC.
  • Haw SC; National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC.
  • Zhou J; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
  • Wang Y; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
  • Lin HJ; National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC.
  • Chen CT; National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC.
  • Dong CL; Department of Physics, Tamkang University, New Taipei City, Taiwan, ROC.
  • Kuo CY; National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC.
  • Wang JQ; Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC.
  • Hu Z; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
  • Zhang L; University of Chinese Academy of Sciences, Beijing, 10049, China.
Nat Commun ; 14(1): 2112, 2023 Apr 13.
Article en En | MEDLINE | ID: mdl-37055401
Designing efficient catalyst for the oxygen evolution reaction (OER) is of importance for energy conversion devices. The anionic redox allows formation of O-O bonds and offers higher OER activity than the conventional metal sites. Here, we successfully prepare LiNiO2 with a dominant 3d8L configuration (L is a hole at O 2p) under high oxygen pressure, and achieve a double ligand holes 3d8L2 under OER since one electron removal occurs at O 2p orbitals for NiIII oxides. LiNiO2 exhibits super-efficient OER activity among LiMO2, RMO3 (M = transition metal, R = rare earth) and other unary 3d catalysts. Multiple in situ/operando spectroscopies reveal NiIII→NiIV transition together with Li-removal during OER. Our theory indicates that NiIV (3d8L2) leads to direct O-O coupling between lattice oxygen and *O intermediates accelerating the OER activity. These findings highlight a new way to design the lattice oxygen redox with enough ligand holes created in OER process.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article