Your browser doesn't support javascript.
loading
MIND-S is a deep-learning prediction model for elucidating protein post-translational modifications in human diseases.
Yan, Yu; Jiang, Jyun-Yu; Fu, Mingzhou; Wang, Ding; Pelletier, Alexander R; Sigdel, Dibakar; Ng, Dominic C M; Wang, Wei; Ping, Peipei.
Afiliación
  • Yan Y; NIH BRIDGE2AI Center at UCLA & NHLBI Integrated Cardiovascular Data Science Training Program at UCLA, Suite 1-609, MRL Building, 675 Charles E. Young Dr. South, Los Angeles, CA 90095-1760, USA.
  • Jiang JY; Medical Informatics Program, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA.
  • Fu M; Department of Physiology, UCLA School of Medicine, Suite 1-609, MRL Building, 675 Charles E. Young Dr., Los Angeles, CA 90095-1760, USA.
  • Wang D; Scalable Analytics Institute (ScAi) at Department of Computer Science, UCLA School of Engineering, Los Angeles, CA 90095, USA.
  • Pelletier AR; Medical Informatics Program, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA.
  • Sigdel D; NIH BRIDGE2AI Center at UCLA & NHLBI Integrated Cardiovascular Data Science Training Program at UCLA, Suite 1-609, MRL Building, 675 Charles E. Young Dr. South, Los Angeles, CA 90095-1760, USA.
  • Ng DCM; Department of Physiology, UCLA School of Medicine, Suite 1-609, MRL Building, 675 Charles E. Young Dr., Los Angeles, CA 90095-1760, USA.
  • Wang W; NIH BRIDGE2AI Center at UCLA & NHLBI Integrated Cardiovascular Data Science Training Program at UCLA, Suite 1-609, MRL Building, 675 Charles E. Young Dr. South, Los Angeles, CA 90095-1760, USA.
  • Ping P; Department of Physiology, UCLA School of Medicine, Suite 1-609, MRL Building, 675 Charles E. Young Dr., Los Angeles, CA 90095-1760, USA.
Cell Rep Methods ; 3(3): 100430, 2023 03 27.
Article en En | MEDLINE | ID: mdl-37056379
We present a deep-learning-based platform, MIND-S, for protein post-translational modification (PTM) predictions. MIND-S employs a multi-head attention and graph neural network and assembles a 15-fold ensemble model in a multi-label strategy to enable simultaneous prediction of multiple PTMs with high performance and computation efficiency. MIND-S also features an interpretation module, which provides the relevance of each amino acid for making the predictions and is validated with known motifs. The interpretation module also captures PTM patterns without any supervision. Furthermore, MIND-S enables examination of mutation effects on PTMs. We document a workflow, its applications to 26 types of PTMs of two datasets consisting of ∼50,000 proteins, and an example of MIND-S identifying a PTM-interrupting SNP with validation from biological data. We also include use case analyses of targeted proteins. Taken together, we have demonstrated that MIND-S is accurate, interpretable, and efficient to elucidate PTM-relevant biological processes in health and diseases.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Aprendizaje Profundo Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Cell Rep Methods Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Aprendizaje Profundo Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Cell Rep Methods Año: 2023 Tipo del documento: Article