Your browser doesn't support javascript.
loading
Salmonella invasion of a cell is self-limiting due to effector-driven activation of N-WASP.
Davidson, Anthony; Hume, Peter J; Greene, Nicholas P; Koronakis, Vassilis.
Afiliación
  • Davidson A; Department of Pathology, University of Cambridge, Cambridge, UK.
  • Hume PJ; Department of Pathology, University of Cambridge, Cambridge, UK.
  • Greene NP; Department of Pathology, University of Cambridge, Cambridge, UK.
  • Koronakis V; Department of Pathology, University of Cambridge, Cambridge, UK.
iScience ; 26(5): 106643, 2023 May 19.
Article en En | MEDLINE | ID: mdl-37168569
ABSTRACT
Salmonella Typhimurium drives uptake into non-phagocytic host cells by injecting effector proteins that reorganize the actin cytoskeleton. The host actin regulator N-WASP has been implicated in bacterial entry, but its precise role is not clear. We demonstrate that Cdc42-dependent N-WASP activation, instigated by the Cdc42-activating effector SopE2, strongly impedes Salmonella uptake into host cells. This inhibitory pathway is predominant later in invasion, with the ubiquitin ligase activity of the effector SopA specifically interfering with negative Cdc42-N-WASP signaling at early stages. The cell therefore transitions from being susceptible to invasion, into a state almost completely recalcitrant to bacterial uptake, providing a mechanism to limit the number of internalized Salmonella. Our work raises the possibility that Cdc42-N-WASP, known to be activated by numerous bacterial and viral species during infection and commonly assumed to promote pathogen uptake, is used to limit the entry of multiple pathogens.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: IScience Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: IScience Año: 2023 Tipo del documento: Article