Your browser doesn't support javascript.
loading
Enhancing fengycin production in the co-culture of Bacillus subtilis and Corynebacterium glutamicum by engineering proline transporter.
Gao, Geng-Rong; Wei, Si-Yu; Ding, Ming-Zhu; Hou, Zheng-Jie; Wang, Dun-Ju; Xu, Qiu-Man; Cheng, Jing-Sheng; Yuan, Ying-Jin.
Afiliación
  • Gao GR; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China; Department of Pharmaceutical Engineering, School of Che
  • Wei SY; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China; Department of Pharmaceutical Engineering, School of Che
  • Ding MZ; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China; Department of Pharmaceutical Engineering, School of Che
  • Hou ZJ; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China; Department of Pharmaceutical Engineering, School of Che
  • Wang DJ; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China; Department of Pharmaceutical Engineering, School of Che
  • Xu QM; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, PR China.
  • Cheng JS; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China; Department of Pharmaceutical Engineering, School of Che
  • Yuan YJ; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China; Department of Pharmaceutical Engineering, School of Che
Bioresour Technol ; 383: 129229, 2023 Sep.
Article en En | MEDLINE | ID: mdl-37244302
ABSTRACT
Fengycin possesses antifungal activity but has limited application due to its low yields. Amino acid precursors play a crucial role in fengycin synthesis. Herein, the overexpression of alanine, isoleucine, and threonine transporter-related genes in Bacillus subtilis increased fengycin production by 34.06%, 46.66%, and 7.83%, respectively. Particularly, fengycin production in B. subtilis reached 871.86 mg/L with the addition of 8.0 g/L exogenous proline after enhancing the expression of the proline transport-related gene opuE. To overcome the metabolic burden caused by excessive enhancement of gene expression for supplying precursors, B. subtilis and Corynebacterium glutamicum which produced proline, were co-cultured, which further improved fengycin production. Fengycin production in the co-culture of B. subtilis and C. glutamicum in shake flasks reached 1554.74 mg/L after optimizing the inoculation time and ratio. The fengycin level in the fed-batch co-culture was 2309.96 mg/L in a 5.0-L bioreactor. These findings provide a new strategy for improving fengycin production.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Bacillus subtilis / Corynebacterium glutamicum Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Bacillus subtilis / Corynebacterium glutamicum Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article