Your browser doesn't support javascript.
loading
Multi-Drug Cocktail Therapy Improves Survival and Neurological Function after Asphyxial Cardiac Arrest in Rodents.
Choudhary, Rishabh C; Shoaib, Muhammad; Hayashida, Kei; Yin, Tai; Miyara, Santiago J; d'Abramo, Cristina; Heuser, William G; Shinozaki, Koichiro; Kim, Nancy; Takegawa, Ryosuke; Nishikimi, Mitsuaki; Li, Timmy; Owens, Casey; Molmenti, Ernesto P; He, Mingzhu; Vanpatten, Sonya; Al-Abed, Yousef; Kim, Junhwan; Becker, Lance B.
Afiliación
  • Choudhary RC; Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA.
  • Shoaib M; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA.
  • Hayashida K; Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA.
  • Yin T; Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA.
  • Miyara SJ; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA.
  • d'Abramo C; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA.
  • Heuser WG; Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA.
  • Shinozaki K; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA.
  • Kim N; Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA.
  • Takegawa R; Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA.
  • Nishikimi M; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA.
  • Li T; Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA.
  • Owens C; Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA.
  • Molmenti EP; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA.
  • He M; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA.
  • Vanpatten S; Litwin-Zucker Center for Research in Alzheimer's Disease, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA.
  • Al-Abed Y; Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA.
  • Kim J; Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA.
  • Becker LB; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA.
Cells ; 12(11)2023 06 05.
Article en En | MEDLINE | ID: mdl-37296668
ABSTRACT

BACKGROUND:

Cardiac arrest (CA) can lead to neuronal degeneration and death through various pathways, including oxidative, inflammatory, and metabolic stress. However, current neuroprotective drug therapies will typically target only one of these pathways, and most single drug attempts to correct the multiple dysregulated metabolic pathways elicited following cardiac arrest have failed to demonstrate clear benefit. Many scientists have opined on the need for novel, multidimensional approaches to the multiple metabolic disturbances after cardiac arrest. In the current study, we have developed a therapeutic cocktail that includes ten drugs capable of targeting multiple pathways of ischemia-reperfusion injury after CA. We then evaluated its effectiveness in improving neurologically favorable survival through a randomized, blind, and placebo-controlled study in rats subjected to 12 min of asphyxial CA, a severe injury model.

RESULTS:

14 rats were given the cocktail and 14 received the vehicle after resuscitation. At 72 h post-resuscitation, the survival rate was 78.6% among cocktail-treated rats, which was significantly higher than the 28.6% survival rate among vehicle-treated rats (log-rank test; p = 0.006). Moreover, in cocktail-treated rats, neurological deficit scores were also improved. These survival and neurological function data suggest that our multi-drug cocktail may be a potential post-CA therapy that deserves clinical translation.

CONCLUSIONS:

Our findings demonstrate that, with its ability to target multiple damaging pathways, a multi-drug therapeutic cocktail offers promise both as a conceptual advance and as a specific multi-drug formulation capable of combatting neuronal degeneration and death following cardiac arrest. Clinical implementation of this therapy may improve neurologically favorable survival rates and neurological deficits in patients suffering from cardiac arrest.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Reanimación Cardiopulmonar / Paro Cardíaco Tipo de estudio: Prognostic_studies Idioma: En Revista: Cells Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Reanimación Cardiopulmonar / Paro Cardíaco Tipo de estudio: Prognostic_studies Idioma: En Revista: Cells Año: 2023 Tipo del documento: Article