Your browser doesn't support javascript.
loading
Stabilization of Bio-Oss® particulates using photocurable hydrogel to enhance bone regeneration by regulating macrophage polarization.
Wang, Jiajia; Qi, Xuanyu; Zhou, Yuqi; Wang, Guifang; Yang, Yuanmeng; Jiang, Ting; Yu, Lei; Wang, Shaoyi; Zhang, Wenjie.
Afiliación
  • Wang J; Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medi
  • Qi X; Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Me
  • Zhou Y; School of Stomatology, Weifang Medical University, Weifang, China.
  • Wang G; Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Me
  • Yang Y; Shanghai Key Laboratory of Stomatology, Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School
  • Jiang T; Shanghai Key Laboratory of Stomatology, Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medi
  • Yu L; School of Stomatology, Weifang Medical University, Weifang, China.
  • Wang S; Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medi
  • Zhang W; Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Me
Front Bioeng Biotechnol ; 11: 1183594, 2023.
Article en En | MEDLINE | ID: mdl-37351475
ABSTRACT
Bone substitutes are widely used in maxillofacial and oral surgeries. However, in clinical practice, bone substitutes with various forms, including separated particulates, powders, and blocks, have exhibited poor handling properties and space maintenance characteristics, resulting in long surgery procedures and unstable volume of the newly formed bone. Movable separated particulates with high stiffness have induced local inflammatory responses that hinder bone regeneration. The present study aimed to develop a new method to enhance the stability and operability of bone substitutes commonly used in dentistry by premixing with photocurable hydrogel GelMA. The GelMA-encapsulated particulate had a strong capacity to aggregate separated particulates and firmly attach to the host bone defect after photocuring compared to particulates alone. Additionally, macrophages at the surface of the GelMA-stabilized particulates tended to present a more M2-like phenotype than those at the surface of Bio-Oss®, leading to more MMR+ multinucleated giant cell formation and the induction of blood vessel invasion and new bone formation. In conclusion, this hydrogel-coated bone substitute strategy facilitates bone regeneration with increased operability, a stable volume of osteogenic space, and a favorable osteogenic microenvironment, indicating its potential value in the field of maxillofacial and oral surgeries when bone substitutes are needed.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Front Bioeng Biotechnol Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Front Bioeng Biotechnol Año: 2023 Tipo del documento: Article