Your browser doesn't support javascript.
loading
Mechanistic Insights into the Antibiofilm Mode of Action of Ellagic Acid.
Ratti, Alessandro; Fassi, Enrico M A; Forlani, Fabio; Mori, Matteo; Villa, Federica; Cappitelli, Francesca; Sgrignani, Jacopo; Roda, Gabriella; Cavalli, Andrea; Villa, Stefania; Grazioso, Giovanni.
Afiliación
  • Ratti A; Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
  • Fassi EMA; Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
  • Forlani F; Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Via G. Celoria 2, 20133 Milano, Italy.
  • Mori M; Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
  • Villa F; Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Via G. Celoria 2, 20133 Milano, Italy.
  • Cappitelli F; Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Via G. Celoria 2, 20133 Milano, Italy.
  • Sgrignani J; Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), Via Chiesa 5, 6500 Bellinzona, Switzerland.
  • Roda G; Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
  • Cavalli A; Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), Via Chiesa 5, 6500 Bellinzona, Switzerland.
  • Villa S; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
  • Grazioso G; Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy.
Pharmaceutics ; 15(6)2023 Jun 17.
Article en En | MEDLINE | ID: mdl-37376205
Bacterial biofilm is a major contributor to the persistence of infection and the limited efficacy of antibiotics. Antibiofilm molecules that interfere with the biofilm lifestyle offer a valuable tool in fighting bacterial pathogens. Ellagic acid (EA) is a natural polyphenol that has shown attractive antibiofilm properties. However, its precise antibiofilm mode of action remains unknown. Experimental evidence links the NADH:quinone oxidoreductase enzyme WrbA to biofilm formation, stress response, and pathogen virulence. Moreover, WrbA has demonstrated interactions with antibiofilm molecules, suggesting its role in redox and biofilm modulation. This work aims to provide mechanistic insights into the antibiofilm mode of action of EA utilizing computational studies, biophysical measurements, enzyme inhibition studies on WrbA, and biofilm and reactive oxygen species assays exploiting a WrbA-deprived mutant strain of Escherichia coli. Our research efforts led us to propose that the antibiofilm mode of action of EA stems from its ability to perturb the bacterial redox homeostasis driven by WrbA. These findings shed new light on the antibiofilm properties of EA and could lead to the development of more effective treatments for biofilm-related infections.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Pharmaceutics Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Pharmaceutics Año: 2023 Tipo del documento: Article