Your browser doesn't support javascript.
loading
A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease.
Patel, Aniruddh P; Wang, Minxian; Ruan, Yunfeng; Koyama, Satoshi; Clarke, Shoa L; Yang, Xiong; Tcheandjieu, Catherine; Agrawal, Saaket; Fahed, Akl C; Ellinor, Patrick T; Tsao, Philip S; Sun, Yan V; Cho, Kelly; Wilson, Peter W F; Assimes, Themistocles L; van Heel, David A; Butterworth, Adam S; Aragam, Krishna G; Natarajan, Pradeep; Khera, Amit V.
Afiliación
  • Patel AP; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
  • Wang M; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
  • Ruan Y; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Koyama S; Department of Medicine, Harvard Medical School, Boston, MA, USA.
  • Clarke SL; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
  • Yang X; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China. wangmx@big.ac.cn.
  • Tcheandjieu C; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
  • Agrawal S; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Fahed AC; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
  • Ellinor PT; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Tsao PS; Stanford University School of Medicine, Palo Alto, CA, USA.
  • Sun YV; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
  • Cho K; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
  • Wilson PWF; Gladstone Institutes, San Francisco, CA, USA.
  • Assimes TL; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
  • van Heel DA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Butterworth AS; Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
  • Aragam KG; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
  • Natarajan P; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
  • Khera AV; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Nat Med ; 29(7): 1793-1803, 2023 07.
Article en En | MEDLINE | ID: mdl-37414900
Identification of individuals at highest risk of coronary artery disease (CAD)-ideally before onset-remains an important public health need. Prior studies have developed genome-wide polygenic scores to enable risk stratification, reflecting the substantial inherited component to CAD risk. Here we develop a new and significantly improved polygenic score for CAD, termed GPSMult, that incorporates genome-wide association data across five ancestries for CAD (>269,000 cases and >1,178,000 controls) and ten CAD risk factors. GPSMult strongly associated with prevalent CAD (odds ratio per standard deviation 2.14, 95% confidence interval 2.10-2.19, P < 0.001) in UK Biobank participants of European ancestry, identifying 20.0% of the population with 3-fold increased risk and conversely 13.9% with 3-fold decreased risk as compared with those in the middle quintile. GPSMult was also associated with incident CAD events (hazard ratio per standard deviation 1.73, 95% confidence interval 1.70-1.76, P < 0.001), identifying 3% of healthy individuals with risk of future CAD events equivalent to those with existing disease and significantly improving risk discrimination and reclassification. Across multiethnic, external validation datasets inclusive of 33,096, 124,467, 16,433 and 16,874 participants of African, European, Hispanic and South Asian ancestry, respectively, GPSMult demonstrated increased strength of associations across all ancestries and outperformed all available previously published CAD polygenic scores. These data contribute a new GPSMult for CAD to the field and provide a generalizable framework for how large-scale integration of genetic association data for CAD and related traits from diverse populations can meaningfully improve polygenic risk prediction.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Enfermedad de la Arteria Coronaria Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nat Med Asunto de la revista: BIOLOGIA MOLECULAR / MEDICINA Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Enfermedad de la Arteria Coronaria Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nat Med Asunto de la revista: BIOLOGIA MOLECULAR / MEDICINA Año: 2023 Tipo del documento: Article