Your browser doesn't support javascript.
loading
Accelerated deterioration corrosion of X70 steel by oxidation acid-producing process catalyzed by Acinetobacter soli in oil-water environment.
Guo, Ding; Zhang, Yimeng; Dong, Xucheng; Liu, Xiangju; Pei, Yingying; Duan, Jizhou; Guan, Fang.
Afiliación
  • Guo D; Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Meg
  • Zhang Y; Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China. Ele
  • Dong X; Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Meg
  • Liu X; Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
  • Pei Y; Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Meg
  • Duan J; Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China. Ele
  • Guan F; Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
Bioelectrochemistry ; 154: 108539, 2023 Dec.
Article en En | MEDLINE | ID: mdl-37579554
ABSTRACT
Deterioration corrosion occurs between the external surface of oil pipelines and aerobic oil-degrading microorganisms in oil fields. Microorganisms with aerobic oil pollution remediation capabilities may catalyze more serious anaerobic microbial corrosion due to the carbon source supply. In this study, Acinetobacter soli strains were isolated from oil-contaminated environments, and their role in the deterioration corrosion behavior of X70 steel in an oil-water environment was investigated using the EDS multipoint scanning method. The presence of oil controls the deposition of carbon and phosphorus and diffusion of oxygen, leading to significant adhesion attraction and initial growth inhibition of biofilm on the metal surface. A. soli facilitates oxygen transfer and iron ion dissolution, thereby accelerating the pitting corrosion of X70 steel. This corrosion of the X70 steel, in turn, further accelerates the microbial degradation of oil, inhibiting the appearance of calcareous scale in the later stage of corrosion. The corrosion of X70 steel is influenced by microbial degradation, and the specific corrosion behaviors are related to the activity of A. soli in the petroleum environment. This study sheds light on the corrosion mechanisms of X70 steel by A. soli at different stages, providing insights into the interactions between microorganisms, oil pollution, and metal corrosion in oil fields.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Acero / Biopelículas Idioma: En Revista: Bioelectrochemistry Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Acero / Biopelículas Idioma: En Revista: Bioelectrochemistry Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article