Your browser doesn't support javascript.
loading
Self-Healable, Adhesive, Anti-Drying, Freezing-Tolerant, and Transparent Conductive Organohydrogel as Flexible Strain Sensor, Triboelectric Nanogenerator, and Skin Barrier.
Zhao, Li; Ling, Qiangjun; Fan, Xin; Gu, Haibin.
Afiliación
  • Zhao L; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
  • Ling Q; College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China.
  • Fan X; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
  • Gu H; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
ACS Appl Mater Interfaces ; 15(34): 40975-40990, 2023 Aug 30.
Article en En | MEDLINE | ID: mdl-37584619
ABSTRACT
Conductive hydrogels have attracted tremendous interest in the construction of flexible strain sensors and triboelectric nanogenerators (TENGs) owing to their good stretchability and adjustable properties. Nevertheless, how to simultaneously achieve high transparency, self-healing, adhesion, antibacterial, anti-freezing, anti-drying, and biocompatibility properties through a simple method remains a challenge. Herein, a transparent, freezing-tolerant, and multifunctional organohydrogel (PAOAM-PDO) as electrode for strain sensors and TENGs was constructed through a free radical polymerization in the 1,3-propanediol (PDO)/water binary solvent system, in which oxide sodium alginate, aminated gelatin, acrylic acid, and AlCl3 were used as raw materials. The obtained PAOAM-PDO exhibited good transparency (>90%), self-healing, adhesiveness, antibacterial property, good conductivity (1.13 S/m), and long-term environmental stability. The introduction of PDO endowed PAOAM-PDO with freezing resistance with a low freezing point of -60 °C, and PAOAM-PDO could serve as a protective skin barrier to prevent frostbite at low temperature. PAOAM-PDO could be assembled as strain sensors to monitor heterogeneous human movements with high strain sensitivity (gauge factor of 7.05, strain = 233%). Meanwhile, PAOAM-PDO could be further fabricated as a TENG with a "sandwich" structure in single electrode mode. Moreover, the resulting TENG achieved electrical outputs with simple hand tapping and served as a self-powered device to light light-emitting diodes. This work displays a feasible strategy to build environment-tolerant and multifunctional organohydrogels, which possess potential applications in the wearable electronics and self-powered devices.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article