Your browser doesn't support javascript.
loading
Validation of a Robotic Testbench for Evaluating Biomechanical Effects of Implant Rotation in Total Knee Arthroplasty on a Cadaveric Specimen.
Wilhelm, Nikolas; von Deimling, Constantin; Haddadin, Sami; Glowalla, Claudio; Burgkart, Rainer.
Afiliación
  • Wilhelm N; Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, School of Medicine, 81675 Munich, Germany.
  • von Deimling C; Munich Institute of Robotics and Machine Intelligence, Department of Electrical and Computer Engineering, Technical University of Munich, 80992 Munich, Germany.
  • Haddadin S; Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, School of Medicine, 81675 Munich, Germany.
  • Glowalla C; Munich Institute of Robotics and Machine Intelligence, Department of Electrical and Computer Engineering, Technical University of Munich, 80992 Munich, Germany.
  • Burgkart R; Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, School of Medicine, 81675 Munich, Germany.
Sensors (Basel) ; 23(17)2023 Aug 27.
Article en En | MEDLINE | ID: mdl-37687914
In this study, we developed and validated a robotic testbench to investigate the biomechanical compatibility of three total knee arthroplasty (TKA) configurations under different loading conditions, including varus-valgus and internal-external loading across defined flexion angles. The testbench captured force-torque data, position, and quaternion information of the knee joint. A cadaver study was conducted, encompassing a native knee joint assessment and successive TKA testing, featuring femoral component rotations at -5°, 0°, and +5° relative to the transepicondylar axis of the femur. The native knee showed enhanced stability in varus-valgus loading, with the +5° external rotation TKA displaying the smallest deviation, indicating biomechanical compatibility. The robotic testbench consistently demonstrated high precision across all loading conditions. The findings demonstrated that the TKA configuration with a +5° external rotation displayed the minimal mean deviation under internal-external loading, indicating superior joint stability. These results contribute meaningful understanding regarding the influence of different TKA configurations on knee joint biomechanics, potentially influencing surgical planning and implant positioning. We are making the collected dataset available for further biomechanical model development and plan to explore the 6 Degrees of Freedom (DOF) robotic platform for additional biomechanical analysis. This study highlights the versatility and usefulness of the robotic testbench as an instrumental tool for expanding our understanding of knee joint biomechanics.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Escarabajos / Artroplastia de Reemplazo de Rodilla / Procedimientos Quirúrgicos Robotizados Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Escarabajos / Artroplastia de Reemplazo de Rodilla / Procedimientos Quirúrgicos Robotizados Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2023 Tipo del documento: Article