A major QTL simultaneously increases the number of spikelets per spike and thousand-kernel weight in a wheat line.
Theor Appl Genet
; 136(10): 213, 2023 Sep 23.
Article
en En
| MEDLINE
| ID: mdl-37740730
KEY MESSAGE: A novel and stably expressed QTL QSNS.sicau-SSY-7A for spikelet number per spike in wheat without negative effects on thousand-kernel weight was identified and validated in different genetic backgrounds. Spikelet number per spike (SNS) is an important determinant of yield in wheat. In the present study, we combined bulked segregant analysis (BSA) and the wheat 660 K single-nucleotide polymorphism (SNP) array to rapidly identify genomic regions associated with SNS from a recombinant inbred line (RIL) population derived from a cross between the wheat lines S849-8 and SY95-71. A genetic map was constructed using Kompetitive Allele Specific PCR markers in the SNP-enriched region on the long arm of chromosome 7A. A major and stably expressed QTL, QSNS.sicau-SSY-7A, was detected in multiple environments. It was located in a 1.6 cM interval on chromosome arm 7AL flanked by the markers AX-109983514 and AX-109820548. This QTL explained 6.86-15.72% of the phenotypic variance, with LOD values ranging from 3.66 to 8.66. Several genes associated with plant growth and development were identified in the interval where QSNS.sicau-SSY-7A was located on the 'Chinese Spring' wheat and wild emmer reference genomes. Furthermore, the effects of QSNS.sicau-SSY-7A and WHEAT ORTHOLOG OFAPO1(WAPO1) on SNS were analyzed. Interestingly, QSNS.sicau-SSY-7A significantly increased SNS without negative effects on thousand-kernel weight, anthesis date and plant height, demonstrating its great potential for breeding aimed at improving grain yield. Taken together, these results indicate that QSNS.sicau-SSY-7A is a promising locus for yield improvement, and its linkage markers are helpful for fine mapping and molecular breeding.
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Triticum
/
Fitomejoramiento
Idioma:
En
Revista:
Theor Appl Genet
Año:
2023
Tipo del documento:
Article