Your browser doesn't support javascript.
loading
Manipulating the Spin Orientation of Co Atoms Using Monatomic Cu Chains.
Noei, Neda; Mozara, Roberto; Montero, Ana M; Brinker, Sascha; Ide, Niklas; Guimarães, Filipe S M; Lichtenstein, Alexander I; Berndt, Richard; Lounis, Samir; Weismann, Alexander.
Afiliación
  • Noei N; Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.
  • Mozara R; Institut für Theoretische Physik, Universität Hamburg, 20355 Hamburg, Germany.
  • Montero AM; Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, 52425 Jülich, Germany.
  • Brinker S; Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, 52425 Jülich, Germany.
  • Ide N; Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.
  • Guimarães FSM; Jülich Supercomputing Centre, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany.
  • Lichtenstein AI; Institut für Theoretische Physik, Universität Hamburg, 20355 Hamburg, Germany.
  • Berndt R; Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.
  • Lounis S; Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, 52425 Jülich, Germany.
  • Weismann A; Faculty of Physics, University of Duisburg-Essen and CENIDE, 47053 Duisburg, Germany.
Nano Lett ; 23(19): 8988-8994, 2023 Oct 11.
Article en En | MEDLINE | ID: mdl-37782684
ABSTRACT
Harnessing the spin of single atoms is at the heart of quantum information nanotechnology based on magnetic concepts. By attaching single Co atoms to monatomic Cu chains, we demonstrate the ability to control the spin orientation by the atomic environment. Due to spin-orbit coupling (SOC), the spin is tilted by ≈58° from the surface normal toward the chain as evidenced by inelastic tunneling spectroscopy. These findings are reproduced by density functional theory calculations and have implications for Co atoms on pristine Cu(111), which are believed to be Kondo systems. Our quantum Monte Carlo calculations suggest that SOC suppresses the Kondo effect of Co atoms at chains and on the flat surface. Our work impacts the fundamental understanding of low-energy excitations in nanostructures on surfaces and demonstrates the ability to manipulate atomic-scale magnetic moments, which can have tremendous implications for quantum devices.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article