Your browser doesn't support javascript.
loading
A New Set of in Silico Tools to Support the Interpretation of ATM Missense Variants Using Graphical Analysis.
Porras, Luz-Marina; Padilla, Natàlia; Moles-Fernández, Alejandro; Feliubadaló, Lidia; Santamariña-Pena, Marta; Sánchez, Alysson T; López-Novo, Anael; Blanco, Ana; de la Hoya, Miguel; Molina, Ignacio J; Osorio, Ana; Pineda, Marta; Rueda, Daniel; Ruiz-Ponte, Clara; Vega, Ana; Lázaro, Conxi; Díez, Orland; Gutiérrez-Enríquez, Sara; de la Cruz, Xavier.
Afiliación
  • Porras LM; Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Padilla N; Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Moles-Fernández A; Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
  • Feliubadaló L; Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación B
  • Santamariña-Pena M; Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de enfermedades Raras, Madrid, Spain.
  • Sánchez AT; Hereditary Cancer Program, Oncobell Program, Catalan Institute of Oncology, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
  • López-Novo A; Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain.
  • Blanco A; Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de enfermedades Raras, Madrid, Spain.
  • de la Hoya M; Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain.
  • Molina IJ; Instituto de Biopatología y Medicina Regenerativa, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
  • Osorio A; Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain; Spanish Network on Rare Diseases, Madrid, Spain.
  • Pineda M; Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación B
  • Rueda D; Hereditary Cancer Laboratory, 12 de Octubre University Hospital, i+12 Research Institute, Madrid, Spain.
  • Ruiz-Ponte C; Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de enfermedades Raras, Madrid, Spain.
  • Vega A; Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de enfermedades Raras, Madrid, Spain.
  • Lázaro C; Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación B
  • Díez O; Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Area of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
  • Gutiérrez-Enríquez S; Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain. Electronic address: sgutierrez@vhio.net.
  • de la Cruz X; Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain. Electronic address: xavier.delacruz@vhir.org.
J Mol Diagn ; 26(1): 17-28, 2024 Jan.
Article en En | MEDLINE | ID: mdl-37865290
Establishing the pathogenic nature of variants in ATM, a gene associated with breast cancer and other hereditary cancers, is crucial for providing patients with adequate care. Unfortunately, achieving good variant classification is still difficult. To address this challenge, we extended the range of in silico tools with a series of graphical tools devised for the analysis of computational evidence by health care professionals. We propose a family of fast and easy-to-use graphical representations in which the impact of a variant is considered relative to other pathogenic and benign variants. To illustrate their value, the representations are applied to three problems in variant interpretation. The assessment of computational pathogenicity predictions showed that the graphics provide an intuitive view of prediction reliability, complementing and extending conventional numerical reliability indexes. When applied to variant of unknown significance populations, the representations shed light on the nature of these variants and can be used to prioritize variants of unknown significance for further studies. In a third application, the graphics were used to compare the two versions of the ATM-adapted American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines, obtaining valuable information on their relative virtues and weaknesses. Finally, a server [ATMision (ATM missense in silico interpretation online)] was generated for users to apply these representations in their variant interpretation problems, to check the ATM-adapted guidelines' criteria for computational evidence on their variant(s) and access different sources of information.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Mutación Missense Idioma: En Revista: J Mol Diagn Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Mutación Missense Idioma: En Revista: J Mol Diagn Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article