Your browser doesn't support javascript.
loading
Nanomechanical Sensing for Mass Flow Control in Nanowire-Based Open Nanofluidic Systems.
Escobar, Javier E; Molina, Juan; Gil-Santos, Eduardo; Ruz, José J; Malvar, Óscar; Kosaka, Priscila M; Tamayo, Javier; San Paulo, Álvaro; Calleja, Montserrat.
Afiliación
  • Escobar JE; Instituto de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain.
  • Molina J; Instituto de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain.
  • Gil-Santos E; Instituto de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain.
  • Ruz JJ; Instituto de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain.
  • Malvar Ó; Instituto de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain.
  • Kosaka PM; Instituto de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain.
  • Tamayo J; Instituto de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain.
  • San Paulo Á; Instituto de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain.
  • Calleja M; Instituto de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain.
ACS Nano ; 17(21): 21044-21055, 2023 Nov 14.
Article en En | MEDLINE | ID: mdl-37903505
Open nanofluidic systems, where liquids flow along the outer surface of nanoscale structures, provide otherwise unfeasible capabilities for extremely miniaturized liquid handling applications. A critical step toward fully functional applications is to obtain quantitative mass flow control. We demonstrate the application of nanomechanical sensing for this purpose by integrating voltage-driven liquid flow along nanowire open channels with mass detection based on flexural resonators. This approach is validated by assembling the nanowires with microcantilever resonators, enabling high-precision control of larger flows, and by using the nanowires as resonators themselves, allowing extremely small liquid volume handling. Both implementations are demonstrated by characterizing voltage-driven flow of ionic liquids along the surface of the nanowires. We find a voltage range where mass flow rate follows a nonlinear monotonic increase, establishing a steady flow regime for which we show mass flow control at rates from below 1 ag/s to above 100 fg/s and precise liquid handling down to the zeptoliter scale. The observed behavior of mass flow rate is consistent with a voltage-induced transition from static wetting to dynamic spreading as the mechanism underlying liquid transport along the nanowires.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2023 Tipo del documento: Article