Your browser doesn't support javascript.
loading
Can Spin-Component Scaled MP2 Achieve kJ/mol Accuracy for Cohesive Energies of Molecular Crystals?
Liang, Yu Hsuan; Ye, Hong-Zhou; Berkelbach, Timothy C.
Afiliación
  • Liang YH; Department of Chemistry, Columbia University, New York, New York 10027, United States.
  • Ye HZ; Department of Chemistry, Columbia University, New York, New York 10027, United States.
  • Berkelbach TC; Department of Chemistry, Columbia University, New York, New York 10027, United States.
J Phys Chem Lett ; 14(46): 10435-10441, 2023 Nov 23.
Article en En | MEDLINE | ID: mdl-37956873
Attaining kJ/mol accuracy in cohesive energy for molecular crystals is a persistent challenge in computational materials science. In this study, we evaluate second-order Møller-Plesset perturbation theory (MP2) and its spin-component scaled models for calculating cohesive energies for 23 molecular crystals (X23 data set). Using periodic boundary conditions and Brillouin zone sampling, we converge results to the thermodynamic and complete basis set limits, achieving an accuracy of about 2 kJ/mol (0.5 kcal/mol), which is rarely achieved in previous MP2 calculations for molecular crystals. When compared to experimental data, our results have a mean absolute error of 12.9 kJ/mol, comparable to Density Functional Theory with the PBE functional and TS dispersion correction. By separately scaling the opposite-spin and same-spin correlation energy components, using predetermined parameters, we reduce the mean absolute error to 9.5 kJ/mol. Further fine-tuning of these scaling parameters specifically for the X23 data set brings the mean absolute error down to 7.5 kJ/mol.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Phys Chem Lett Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Phys Chem Lett Año: 2023 Tipo del documento: Article