Your browser doesn't support javascript.
loading
Integrated metabolomics and proteomics analysis to understand muscle atrophy resistance in hibernating Spermophilus dauricus.
Dang, Kai; Gao, Yuan; Wang, Huiping; Yang, Huajian; Kong, Yong; Jiang, Shanfeng; Qian, Airong.
Afiliación
  • Dang K; Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; N
  • Gao Y; Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; N
  • Wang H; Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, China; China Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an, 710069, China.
  • Yang H; Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, China; China Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an, 710069, China.
  • Kong Y; Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, China; China Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an, 710069, China.
  • Jiang S; Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; N
  • Qian A; Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; N
Cryobiology ; 114: 104838, 2024 03.
Article en En | MEDLINE | ID: mdl-38097057
ABSTRACT
Hibernating Spermophilus dauricus experiences minor muscle atrophy, which is an attractive anti-disuse muscle atrophy model. Integrated metabolomics and proteomics analysis was performed on the hibernating S. dauricus during the pre-hibernation (PRE) stage, torpor (TOR) stage, interbout arousal (IBA) stage, and post-hibernation (POST) stage. Time course stage transition-based (TOR vs. PRE, IBA vs. TOR, POST vs. IBA) differential expression analysis was performed based on the R limma package. A total of 14 co-differential metabolites were detected. Among these, l-cystathionine, l-proline, ketoleucine, serine, and 1-Hydroxy-3,6,7-Trimethoxy-2, 8-Diprenylxanthone demonstrated the highest levels in the TOR stage; Beta-Nicotinamide adenine dinucleotide, Dihydrozeatin, Pannaric acid, and Propionylcarnitine demonstrated the highest levels in the IBA stage; Adrenosterone, PS (180/14,15-EpETE), S-Carboxymethylcysteine, TxB2, and 3-Phenoxybenzylalcohol demonstrated the highest levels in the POST stage. Kyoto Encyclopedia of Genes and Genomes pathways annotation analysis indicated that biosynthesis of amino acids, ATP-binding cassette transporters, and cysteine and methionine metabolism were co-differential metabolism pathways during the different stages of hibernation. The stage-specific metabolism processes and integrated enzyme-centered metabolism networks in the different stages were also deciphered. Overall, our findings suggest that (1) the periodic change of proline, ketoleucine, and serine contributes to the hindlimb lean tissue preservation; and (2) key metabolites related to the biosynthesis of amino acids, ATP-binding cassette transporters, and cysteine and methionine metabolism may be associated with muscle atrophy resistance. In conclusion, our co-differential metabolites, co-differential metabolism pathways, stage-specific metabolism pathways, and integrated enzyme-centered metabolism networks are informative for biologists to generate hypotheses for functional analyses to perturb disuse-induced muscle atrophy.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Músculo Esquelético / Hibernación / Cetoácidos Idioma: En Revista: Cryobiology Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Músculo Esquelético / Hibernación / Cetoácidos Idioma: En Revista: Cryobiology Año: 2024 Tipo del documento: Article