Your browser doesn't support javascript.
loading
Architecture and potential roles of a delta-class glutathione S-transferase in protecting honey bee from agrochemicals.
Moural, Timothy W; Koirala B K, Sonu; Bhattarai, Gaurab; He, Ziming; Guo, Haoyang; Phan, Ngoc T; Rajotte, Edwin G; Biddinger, David J; Hoover, Kelli; Zhu, Fang.
Afiliación
  • Moural TW; Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA. Electronic address: twm78@psu.edu.
  • Koirala B K S; Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA. Electronic address: svk6273@psu.edu.
  • Bhattarai G; Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA. Electronic address: gbhattarai@uga.edu.
  • He Z; Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA. Electronic address: zqh5215@psu.edu.
  • Guo H; Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA. Electronic address: hqg5174@psu.edu.
  • Phan NT; Department of Entomology and Plant Pathology, University of Arkansas, AR 72701, USA; Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Gia Lam, Hanoi 100000, Viet Nam. Electronic address: pearlp@uark.edu.
  • Rajotte EG; Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA. Electronic address: uvu@psu.edu.
  • Biddinger DJ; Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Penn State Fruit Research and Extension Center, Biglerville, PA 17307, USA. Electronic address: djb134@psu.edu.
  • Hoover K; Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA. Electronic address: kxh25@psu.edu.
  • Zhu F; Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA. Electronic address: fuz59@psu.edu.
Chemosphere ; 350: 141089, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38163465
ABSTRACT
The European honey bee, Apis mellifera, serves as the principle managed pollinator species globally. In recent decades, honey bee populations have been facing serious health threats from combined biotic and abiotic stressors, including diseases, limited nutrition, and agrochemical exposure. Understanding the molecular mechanisms underlying xenobiotic adaptation of A. mellifera is critical, considering its extensive exposure to phytochemicals and agrochemicals present in the environment. In this study, we conducted a comprehensive structural and functional characterization of AmGSTD1, a delta class glutathione S-transferase (GST), to unravel its roles in agrochemical detoxification and antioxidative stress responses. We determined the 3-dimensional (3D) structure of a honey bee GST using protein crystallography for the first time, providing new insights into its molecular structure. Our investigations revealed that AmGSTD1 metabolizes model substrates, including 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrophenyl acetate (PNA), phenylethyl isothiocyanate (PEITC), propyl isothiocyanate (PITC), and the oxidation byproduct 4-hydroxynonenal (HNE). Moreover, we discovered that AmGSTD1 exhibits binding affinity with the fluorophore 8-Anilinonaphthalene-1-sulfonic acid (ANS), which can be inhibited with various herbicides, fungicides, insecticides, and their metabolites. These findings highlight the potential contribution of AmGSTD1 in safeguarding honey bee health against various agrochemicals, while also mitigating oxidative stress resulting from exposure to these substances.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Fungicidas Industriales / Insecticidas Tipo de estudio: Prognostic_studies Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Fungicidas Industriales / Insecticidas Tipo de estudio: Prognostic_studies Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article