Dual-responsive in situ gelling polymer matrix for tunable ketamine general anesthesia in experimental animals.
Int J Pharm
; 652: 123820, 2024 Mar 05.
Article
en En
| MEDLINE
| ID: mdl-38242258
ABSTRACT
Animal experimentation is a critical part of the drug development process and pharmaceutical research. General anesthesia is one of the most common procedures. Careful administration and dosing of anesthetics ensure animal safety and study success. However, repeated injections are needed to maintain anesthesia, leading to adverse effects. Ketamine, a dissociative anesthetic, is commonly used for inducing anesthesia in animals and suffers from a short half-life requiring repeated dosing. Herein, we report a novel system for controlled anesthesia post-intraperitoneal administration. A polymer solution called "premix" was developed using two stimuli-responsive polymers, Pluronic (PF) and Carbopol (CP). As the premix was mixed with ketamine solution and injected, it underwent in situ gelation, hence controlling ketamine release and anesthesia. The PF and CP concentrations were optimized for the gelation temperature and viscosity upon mixing with the ketamine solution. The optimal premix/ketamine formulation (1.51) was liquid at room temperature and gel at physiological conditions with favorable mucoadhesion and rheology. Premix retarded the release of ketamine, translating to tunable anesthesia in vivo. Anesthesia duration and recovery were tunable per ketamine dose with minimal side effects. Therefore, we propose the implementation of PF/CP premix as a vehicle for general anesthesia in animals for optimal duration and effect.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Ketamina
Idioma:
En
Revista:
Int J Pharm
Año:
2024
Tipo del documento:
Article