Your browser doesn't support javascript.
loading
New information on paleopathologies in non-avian theropod dinosaurs: a case study on South American abelisaurids.
Baiano, Mattia A; Cerda, Ignacio A; Bertozzo, Filippo; Pol, Diego.
Afiliación
  • Baiano MA; School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. mbaiano@unrn.edu.ar.
  • Cerda IA; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Ciudad Autónoma de Buenos Aires, Argentina. mbaiano@unrn.edu.ar.
  • Bertozzo F; Area Laboratorio e Investigación, Museo Municipal 'Ernesto Bachmann', Dr Natali S/N, 8311, Villa El Chocon, Neuquén, Argentina. mbaiano@unrn.edu.ar.
  • Pol D; Universidad Nacional de Río Negro (UNRN), Isidro Lobo 516, 8332, General Roca, Río Negro, Argentina. mbaiano@unrn.edu.ar.
BMC Ecol Evol ; 24(1): 6, 2024 Jan 31.
Article en En | MEDLINE | ID: mdl-38291378
ABSTRACT
Studies on pathological fossil bones have allowed improving the knowledge of physiology and ecology, and consequently the life history of extinct organisms. Among extinct vertebrates, non-avian dinosaurs have drawn attention in terms of pathological evidence, since a wide array of fossilized lesions and diseases were noticed in these ancient organisms. Here, we evaluate the pathological conditions observed in individuals of different brachyrostran (Theropoda, Abelisauridae) taxa, including Aucasaurus garridoi, Elemgasem nubilus, and Quilmesaurus curriei. For this, we use multiple methodological approaches such as histology and computed tomography, in addition to the macroscopic evaluation. The holotype of Aucasaurus shows several pathognomonic traits of a failure of the vertebral segmentation during development, causing the presence of two fused caudal vertebrae. The occurrence of this condition in Aucasaurus is the first case to be documented so far in non-tetanuran theropods. Regarding the holotype of Elemgasem, the histology of two fused vertebrae shows an intervertebral space between the centra, thus the fusion is limited to the distal rim of the articular surfaces. This pathology is here considered as spondyloarthropathy, the first evidence for a non-tetanuran theropod. The microstructural arrangement of the right tibia of Quilmesaurus shows a marked variation in a portion of the outer cortex, probably due to the presence of the radial fibrolamellar bone tissue. Although similar bone tissue is present in other extinct vertebrates and the cause of its formation is still debated, it could be a response to some kind of pathology. Among non-avian theropods, traumatic injuries are better represented than other maladies (e.g., infection, congenital or metabolic diseases, etc.). These pathologies are recovered mainly among large-sized theropods such as Abelisauridae, Allosauridae, Carcharodontosauridae, and Tyrannosauridae, and distributed principally among axial elements. Statistical tests on the distribution of injuries in these theropod clades show a strong association between taxa-pathologies, body regions-pathologies, and taxa-body regions, suggesting different life styles and behaviours may underlie the frequency of different injuries among theropod taxa.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Dinosaurios País/Región como asunto: America do sul Idioma: En Revista: BMC Ecol Evol / BMC ecol. evol / BMC ecology and evolution Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Dinosaurios País/Región como asunto: America do sul Idioma: En Revista: BMC Ecol Evol / BMC ecol. evol / BMC ecology and evolution Año: 2024 Tipo del documento: Article