Your browser doesn't support javascript.
loading
Revealing Academic Evolution and Frontier Pattern in the Field of Uveitis Using Bibliometric Analysis, Natural Language Processing, and Machine Learning.
Lu, Ao; Li, Keyan; Su, Guannan; Yang, Peizeng.
Afiliación
  • Lu A; The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China.
  • Li K; The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China.
  • Su G; The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China.
  • Yang P; The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China.
Ocul Immunol Inflamm ; 32(8): 1564-1579, 2024 Oct.
Article en En | MEDLINE | ID: mdl-38427350
ABSTRACT

PURPOSE:

Numerous uveitis articles were published in this century, underneath which hides valuable intelligence. We aimed to characterize the evolution and patterns in this field.

METHODS:

We divided the 15,994 uveitis papers into four consecutive time periods for bibliometric analysis, and applied latent Dirichlet allocation topic modeling and machine learning techniques to the latest period. .

RESULTS:

The yearly publication pattern fitted the curve 1.21335x2 - 4,848.95282x + 4,844,935.58876 (R2 = 0.98311). The USA, the most productive country/region, focused on topics like ankylosing spondylitis and biologic therapy, whereas China (mainland) focused on topics like OCT and Behcet disease. The logistic regression showed the highest accuracy (71.6%) in the test set.

CONCLUSION:

In this century, a growing number of countries/regions/authors/journals are involved in the uveitis study, promoting the scientific output and thematic evolution. Our pioneering study uncovers the evolving academic trends and frontier patterns in this field using bibliometric analysis and AI algorithms.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Uveítis / Procesamiento de Lenguaje Natural / Bibliometría / Aprendizaje Automático Idioma: En Revista: Ocul Immunol Inflamm Asunto de la revista: ALERGIA E IMUNOLOGIA / OFTALMOLOGIA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Uveítis / Procesamiento de Lenguaje Natural / Bibliometría / Aprendizaje Automático Idioma: En Revista: Ocul Immunol Inflamm Asunto de la revista: ALERGIA E IMUNOLOGIA / OFTALMOLOGIA Año: 2024 Tipo del documento: Article