Your browser doesn't support javascript.
loading
Visual Gustation via Regulable Elastic Photonic Crystals.
Xie, Xinyuan; Zheng, Suiting; Liu, Yunyan; Tang, Yongtao; Zhang, Zilu; Wu, Hao; Hao, Xin-Qi; Huang, Yu; Cheng, Nan; Li, Fengyu.
Afiliación
  • Xie X; College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China.
  • Zheng S; College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China.
  • Liu Y; College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China.
  • Tang Y; College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China.
  • Zhang Z; Department of Cardiovascular Surgery, PLA General Hospital, Beijing 100853, P. R. China.
  • Wu H; College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China.
  • Hao XQ; Department of Cardiovascular Surgery, PLA General Hospital, Beijing 100853, P. R. China.
  • Huang Y; College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China.
  • Cheng N; College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
  • Li F; State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
ACS Appl Mater Interfaces ; 16(11): 14133-14143, 2024 Mar 20.
Article en En | MEDLINE | ID: mdl-38447141
ABSTRACT
The unique structural sensitivity of photonic crystals (PCs) endows them with stretchable or elastic tunability for light propagation and spontaneous emission modulation. Hydrogel PCs have been demonstrated to have biocompatibility and flexibility for potential human health detection and environmental security monitoring. However, current elastic PCs still possess a fixed elastic modulus and uncontrollable structural colors based on a tunable elastic modulus, posing considerable challenges for in situ detection, particularly in wearable or portable sensing devices. In this work, we introduced a novel chemo-mechanical transduction mechanism embedded within a photonic crystal nanomatrix, leading to the creation of structural colors and giving rise to a visual gustation sensing experience. By utilizing the captivating structural colors generated by the hydrogel PC, we employ abundant optical information to identify various analytes. The finite element analysis proved the electric field distribution in the PC matrix during stretch operations. The elastic-optical behaviors with various chemical cosolvents, including cations, anions, saccharides, or organic acids, were investigated. The mechanism of the Hofmeister effect regulating the elasticity of hydrogels was demonstrated with the network nanostructure of the hydrogels. The hydrogel PC matrix demonstrates remarkable capability in efficiently distinguishing a wide range of cations, anions, saccharides, and organic acids across various concentrations, mixtures, and even real food samples, such as tastes and soups. Through comprehensive research, a precise relationship between the structural colors and the elastic modulus of hydrogel PCs has been established, contributing to the biomatching elastic-optics platform for wearable devices, a dynamic environment, and clinical or health monitoring auxiliary.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Gusto / Hidrogeles Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Gusto / Hidrogeles Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article