Your browser doesn't support javascript.
loading
Combined transcriptomics and metabolomics to analyse the response of Cuminum cyminum L. under Pb stress.
Yang, Xinlong; Chen, Yinguang; Liu, Weiguo; Huang, Tingwen; Yang, Yang; Mao, Yuqing; Meng, Yao.
Afiliación
  • Yang X; College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China.
  • Chen Y; School of Environment Science and Engineering, Tongji University, Shanghai 200092, China.
  • Liu W; College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China. Electronic address: wgliuxj@xju.edu.cn.
  • Huang T; College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China.
  • Yang Y; College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China.
  • Mao Y; Wuwei Academy of Agricultural Sciences, Wuwei 733000, China.
  • Meng Y; College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China.
Sci Total Environ ; 923: 171497, 2024 May 01.
Article en En | MEDLINE | ID: mdl-38453091
ABSTRACT
Lead (Pb) can disrupt plant gene expression, modify metabolite contents, and influence the growth of plants. Cuminum cyminum L. is highly adaptable to adversity, but molecular mechanism by which it responds to Pb stress is unknown. For this study, transcriptomic and metabolomic sequencing was performed on root tissues of C. cyminum under Pb stress. Our results showed that high Pb stress increased the activity of peroxidase (POD), the contents of malondialdehyde (MDA) and proline by 80.03 %, 174.46 % and 71.24 %, respectively. Meanwhile, Pb stress decreased the activities of superoxide dismutase (SOD) and catalase (CAT) as well as contents of soluble sugars and GSH, which thus affected the growth of C. cyminum. In addition, Pb stress influenced the accumulation and transport of Pb in C. cyminum. Metabolomic results showed that Pb stress affected eight metabolic pathways involving 108 differentially expressed metabolites, primarily amino acids, organic acids, and carbohydrates. The differentially expressed genes identified through transcriptome analysis were mainly involved the oxidation reductase activity, transmembrane transport, phytohormone signaling, and MAPK signaling pathway. The results of this study will help to understand the molecular mechanisms of C. cyminum response to Pb stress, and provide a basis for screening seeds with strong resistance to heavy metals.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Cuminum / Antioxidantes Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Cuminum / Antioxidantes Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article