Your browser doesn't support javascript.
loading
The combined effect of carbon starvation and exogenous riboflavin accelerated the Pseudomonas aeruginosa-induced nickel corrosion.
Pu, Yanan; Hou, Su; Chen, Shougang; Hou, Yue; Feng, Fan; Guo, Zihao; Zhu, Congrui.
Afiliación
  • Pu Y; School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Hou S; School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Chen S; School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; Qingdao Key Laboratory of Marine Extreme Environmental Materials, Qingdao 266100, China. Electronic address: oucsgchen@163.com.
  • Hou Y; School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Feng F; School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Guo Z; School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
  • Zhu C; School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
Bioelectrochemistry ; 157: 108679, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38471411
ABSTRACT
The primary objective of this study is to elucidate the synergistic effect of an exogenous redox mediator and carbon starvation on the microbiologically influenced corrosion (MIC) of metal nickel (Ni) by nitrate reducing Pseudomonas aeruginosa. Carbon source (CS) starvation markedly accelerates Ni MIC by P. aeruginosa. Moreover, the addition of exogenous riboflavin significantly decreases the corrosion resistance of Ni. The MIC rate of Ni (based on corrosion loss volume) is ranked as 10 % CS level + riboflavin > 100 % CS level + riboflavin > 10 % CS level > 100 % CS level. Notably, starved P. aeruginosa biofilm demonstrates greater aggressiveness in contributing to the initiation of surface pitting on Ni. Under CS deficiency (10 % CS level) in the presence of riboflavin, the deepest Ni pits reach a maximum depth of 11.2 µm, and the corrosion current density (icorr) peak at approximately 1.35 × 10-5 A·cm-2, representing a 2.6-fold increase compared to the full-strength media (5.25 × 10-6 A·cm-2). For the 10 % CS and 100 % CS media, the addition of exogenous riboflavin increases the Ni MIC rate by 3.5-fold and 2.9-fold, respectively. Riboflavin has been found to significantly accelerate corrosion, with its augmentation effect on Ni MIC increasing as the CS level decreases. Overall, riboflavin promotes electron transfer from Ni to P. aeruginosa, thus accelerating Ni MIC.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Pseudomonas aeruginosa / Níquel Idioma: En Revista: Bioelectrochemistry Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Pseudomonas aeruginosa / Níquel Idioma: En Revista: Bioelectrochemistry Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article