Your browser doesn't support javascript.
loading
Check your outliers! An introduction to identifying statistical outliers in R with easystats.
Thériault, Rémi; Ben-Shachar, Mattan S; Patil, Indrajeet; Lüdecke, Daniel; Wiernik, Brenton M; Makowski, Dominique.
Afiliación
  • Thériault R; Department of Psychology, Université du Québec à Montréal, Succursale Centre-Ville, C.P. 8888, Montréal, Québec, H3C 3P8, Canada. theriault.remi@courrier.uqam.ca.
  • Ben-Shachar MS; Independent Researcher, Ramat Gan, Israel.
  • Patil I; Center for Humans and Machines, Max Planck Institute for Human Development, Berlin, Germany.
  • Lüdecke D; Institute of Medical Sociology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  • Wiernik BM; Independent Researcher, Tampa, FL, USA.
  • Makowski D; School of Psychology, University of Sussex, Brighton, UK.
Behav Res Methods ; 56(4): 4162-4172, 2024 04.
Article en En | MEDLINE | ID: mdl-38528245
ABSTRACT
Beyond the challenge of keeping up to date with current best practices regarding the diagnosis and treatment of outliers, an additional difficulty arises concerning the mathematical implementation of the recommended methods. Here, we provide an overview of current recommendations and best practices and demonstrate how they can easily and conveniently be implemented in the R statistical computing software, using the {performance} package of the easystats ecosystem. We cover univariate, multivariate, and model-based statistical outlier detection methods, their recommended threshold, standard output, and plotting methods. We conclude by reviewing the different theoretical types of outliers, whether to exclude or winsorize them, and the importance of transparency. A preprint of this paper is available at 10.31234/osf.io/bu6nt.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Programas Informáticos / Modelos Estadísticos Idioma: En Revista: Behav Res Methods Asunto de la revista: CIENCIAS DO COMPORTAMENTO Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Programas Informáticos / Modelos Estadísticos Idioma: En Revista: Behav Res Methods Asunto de la revista: CIENCIAS DO COMPORTAMENTO Año: 2024 Tipo del documento: Article