Your browser doesn't support javascript.
loading
BdTTLL3B-mediated polyglycylation is involved in the spermatogenesis in Bactrocera dorsalis.
Wu, Shunjiao; Ran, Lilin; Zhang, Tongfang; Li, Ying; Xu, Yonghong; Li, Yaying; Liu, Huai; Wang, Jia.
Afiliación
  • Wu S; College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agriculture Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
  • Ran L; College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agriculture Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
  • Zhang T; College of Food Science, Southwest University, Chongqing 400715, China.
  • Li Y; College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agriculture Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
  • Xu Y; College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agriculture Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
  • Li Y; College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agriculture Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
  • Liu H; College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agriculture Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China. Electronic address: liuhuai@swu.edu.cn.
  • Wang J; College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agriculture Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China. Electronic address: aimarjia@126.com.
Int J Biol Macromol ; 267(Pt 1): 131508, 2024 May.
Article en En | MEDLINE | ID: mdl-38604421
ABSTRACT
Polyglycylation is a post-translational modification that generates glycine side chains in the C-terminal domains of both α- and ß-tubulins. To date, the patterns and significance of polyglycylation across insect species remain largely unknown. The TTLL3B was thought to be a polyglycylase and be essential for polyglycylation in dipteran insects. In this study, the TTLL3B of Bactrocera dorsalis (BdTTLL3B) was identified and characterized. The BdTTLL3B expressed remarkably higher in adult males, especially in testes. The spatio-temporal patterns of polyglycylation were consistent with that of BdTTLL3B. Along with spermatogenesis, the intensity of polyglycylation was enhanced steadily and concentrated in elongated flagella. The expression of recombinant BdTTLL3B in Hela cells, which are genetically deficient in polyglycylation, catalyzed intracellular polyglycylation, validating the identity of BdTTLL3B as a polyglycylase. Knockout of BdTTLL3B significantly suppressed polyglycylation in testes and impaired male fertility, probably due to abnormal morphology of mitochondrial derivatives and over-accumulation of paracrystalline. Taken together, these findings indicated that the BdTTLL3B-mediated polyglycylation is involved in the spermatogenesis and play an important role in fertility of adult B. dorsalis. Therefore, the BdTTLL3B can be considered as a candidate target gene for the management of B. dorsalis, such as developing gene silencing/knockout-based sterile insect technology (SIT).
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Espermatogénesis / Tephritidae Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Espermatogénesis / Tephritidae Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article