Your browser doesn't support javascript.
loading
Based on molecular docking and real-time PCR technology, the two-component system Bae SR was investigated on the mechanism of drug resistance in CRAB.
Pan, Beizhen; Wang, Yuefeng; Su, Jiansheng; Liu, Yan; Yang, Jifei; Zhou, Yujiao; Sun, Liyuan.
Afiliación
  • Pan B; School of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, Jilin Province, China.
  • Wang Y; School of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, Jilin Province, China.
  • Su J; School of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, Jilin Province, China.
  • Liu Y; School of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, Jilin Province, China.
  • Yang J; School of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, Jilin Province, China.
  • Zhou Y; School of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, Jilin Province, China.
  • Sun L; School of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, Jilin Province, China. jlsunliyuan@163.com.
BMC Microbiol ; 24(1): 126, 2024 Apr 15.
Article en En | MEDLINE | ID: mdl-38622558
ABSTRACT
This study aimed to explore the role of the two-component system Bae SR in the mechanism of drug resistance in carbapenem-resistant A. baumannii (CRAB) using molecular docking and real-time polymerase chain reaction (PCR). The two-component system Bae SR of Acinetobacter baumannii was subjected to molecular docking with imipenem, meropenem, and levofloxacin. Antibacterial assays and fluorescence quantitative PCR were used to explore protein-ligand interactions and molecular biological resistance mechanisms related to CRAB. The analysis of the two-component system in A. baumannii revealed that imipenem exhibited the highest docking energy in Bae S at - 5.81 kcal/mol, while the docking energy for meropenem was - 4.92 kcal/mol. For Bae R, imipenem had a maximum docking energy of - 4.28 kcal/mol, compared with - 4.60 kcal/mol for meropenem. The highest binding energies for Bae S-levofloxacin and Bae R-levofloxacin were - 3.60 and - 3.65 kcal/mol, respectively. All imipenem-resistant strains had minimum inhibitory concentration (MIC) values of 16 µg/mL, whereas levofloxacin-resistant strains had MIC values of 8 µg/mL. The time-sterilization curve showed a significant decrease in bacterial colony numbers at 2 h under the action of 8 µg/mL imipenem, indicating antibacterial effects. In contrast, levofloxacin did not exhibit any antibacterial activity. Fluorescence quantitative PCR results revealed significantly increased relative expression levels of bae S and bae R genes in the CRAB group, which were 2 and 1.5 times higher than those in the CSAB group, respectively, with statistically significant differences. Molecular docking in this study found that the combination of Bae SR and carbapenem antibiotics (imipenem, meropenem) exhibited stronger affinity and stability compared with levofloxacin. Moreover, the overexpression of the two-component system genes in carbapenem-resistant A. baumannii enhanced its resistance to carbapenem, providing theoretical and practical insights into carbapenem resistance in respiratory tract infections caused by A. baumannii.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Carbapenémicos / Acinetobacter baumannii Idioma: En Revista: BMC Microbiol Asunto de la revista: MICROBIOLOGIA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Carbapenémicos / Acinetobacter baumannii Idioma: En Revista: BMC Microbiol Asunto de la revista: MICROBIOLOGIA Año: 2024 Tipo del documento: Article