Your browser doesn't support javascript.
loading
Phylogenomics and the rise of the angiosperms.
Zuntini, Alexandre R; Carruthers, Tom; Maurin, Olivier; Bailey, Paul C; Leempoel, Kevin; Brewer, Grace E; Epitawalage, Niroshini; Françoso, Elaine; Gallego-Paramo, Berta; McGinnie, Catherine; Negrão, Raquel; Roy, Shyamali R; Simpson, Lalita; Toledo Romero, Eduardo; Barber, Vanessa M A; Botigué, Laura; Clarkson, James J; Cowan, Robyn S; Dodsworth, Steven; Johnson, Matthew G; Kim, Jan T; Pokorny, Lisa; Wickett, Norman J; Antar, Guilherme M; DeBolt, Lucinda; Gutierrez, Karime; Hendriks, Kasper P; Hoewener, Alina; Hu, Ai-Qun; Joyce, Elizabeth M; Kikuchi, Izai A B S; Larridon, Isabel; Larson, Drew A; de Lírio, Elton John; Liu, Jing-Xia; Malakasi, Panagiota; Przelomska, Natalia A S; Shah, Toral; Viruel, Juan; Allnutt, Theodore R; Ameka, Gabriel K; Andrew, Rose L; Appelhans, Marc S; Arista, Montserrat; Ariza, María Jesús; Arroyo, Juan; Arthan, Watchara; Bachelier, Julien B; Bailey, C Donovan; Barnes, Helen F.
Afiliación
  • Zuntini AR; Royal Botanic Gardens, Kew, Richmond, UK.
  • Carruthers T; Royal Botanic Gardens, Kew, Richmond, UK.
  • Maurin O; Royal Botanic Gardens, Kew, Richmond, UK.
  • Bailey PC; Royal Botanic Gardens, Kew, Richmond, UK.
  • Leempoel K; Royal Botanic Gardens, Kew, Richmond, UK.
  • Brewer GE; Royal Botanic Gardens, Kew, Richmond, UK.
  • Epitawalage N; Royal Botanic Gardens, Kew, Richmond, UK.
  • Françoso E; Royal Botanic Gardens, Kew, Richmond, UK.
  • Gallego-Paramo B; Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, London, UK.
  • McGinnie C; Royal Botanic Gardens, Kew, Richmond, UK.
  • Negrão R; Royal Botanic Gardens, Kew, Richmond, UK.
  • Roy SR; Royal Botanic Gardens, Kew, Richmond, UK.
  • Simpson L; Royal Botanic Gardens, Kew, Richmond, UK.
  • Toledo Romero E; Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia.
  • Barber VMA; Royal Botanic Gardens, Kew, Richmond, UK.
  • Botigué L; Royal Botanic Gardens, Kew, Richmond, UK.
  • Clarkson JJ; Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain.
  • Cowan RS; Royal Botanic Gardens, Kew, Richmond, UK.
  • Dodsworth S; Royal Botanic Gardens, Kew, Richmond, UK.
  • Johnson MG; School of Biological Sciences, University of Portsmouth, Portsmouth, UK.
  • Kim JT; Texas Tech University, Lubbock, TX, USA.
  • Pokorny L; School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK.
  • Wickett NJ; Royal Botanic Gardens, Kew, Richmond, UK.
  • Antar GM; Department of Biodiversity and Conservation, Real Jardín Botánico (RJB-CSIC), Madrid, Spain.
  • DeBolt L; Department of Biological Sciences, Clemson University, Clemson, SC, USA.
  • Gutierrez K; Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
  • Hendriks KP; Departamento de Ciências Agrárias e Biológicas, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo, São Mateus, Brazil.
  • Hoewener A; Smith College, Northampton, MA, USA.
  • Hu AQ; Smith College, Northampton, MA, USA.
  • Joyce EM; Department of Biology, University of Osnabrück, Osnabrück, Germany.
  • Kikuchi IABS; Naturalis Biodiversity Center, Leiden, The Netherlands.
  • Larridon I; Plant Biodiversity, Technical University Munich, Freising, Germany.
  • Larson DA; Royal Botanic Gardens, Kew, Richmond, UK.
  • de Lírio EJ; Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia.
  • Liu JX; Systematic, Biodiversity and Evolution of Plants, Ludwig Maximilian University of Munich, Munich, Germany.
  • Malakasi P; Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
  • Przelomska NAS; Royal Botanic Gardens, Kew, Richmond, UK.
  • Shah T; Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
  • Viruel J; Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
  • Allnutt TR; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
  • Ameka GK; Royal Botanic Gardens, Kew, Richmond, UK.
  • Andrew RL; Royal Botanic Gardens, Kew, Richmond, UK.
  • Appelhans MS; School of Biological Sciences, University of Portsmouth, Portsmouth, UK.
  • Arista M; Royal Botanic Gardens, Kew, Richmond, UK.
  • Ariza MJ; Royal Botanic Gardens, Kew, Richmond, UK.
  • Arroyo J; Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia.
  • Arthan W; Department of Plant and Environmental Biology, University of Ghana, Accra, Ghana.
  • Bachelier JB; Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia.
  • Bailey CD; Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany.
  • Barnes HF; Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
Nature ; 629(8013): 843-850, 2024 May.
Article en En | MEDLINE | ID: mdl-38658746
ABSTRACT
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5-7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Filogenia / Genes de Plantas / Evolución Molecular / Magnoliopsida / Genómica Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Filogenia / Genes de Plantas / Evolución Molecular / Magnoliopsida / Genómica Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article