Your browser doesn't support javascript.
loading
Energy flux couples sulfur isotope fractionation to proteomic and metabolite profiles in Desulfovibrio vulgaris.
Leavitt, William D; Waldbauer, Jacob; Venceslau, Sofia S; Sim, Min Sub; Zhang, Lichun; Boidi, Flavia Jaquelina; Plummer, Sydney; Diaz, Julia M; Pereira, Inês A C; Bradley, Alexander S.
Afiliación
  • Leavitt WD; Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA.
  • Waldbauer J; Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA.
  • Venceslau SS; Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA.
  • Sim MS; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
  • Zhang L; School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea.
  • Boidi FJ; Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA.
  • Plummer S; Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA.
  • Diaz JM; Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
  • Pereira IAC; Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA.
  • Bradley AS; Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA.
Geobiology ; 22(3): e12600, 2024.
Article en En | MEDLINE | ID: mdl-38725144
ABSTRACT
Microbial sulfate reduction is central to the global carbon cycle and the redox evolution of Earth's surface. Tracking the activity of sulfate reducing microorganisms over space and time relies on a nuanced understanding of stable sulfur isotope fractionation in the context of the biochemical machinery of the metabolism. Here, we link the magnitude of stable sulfur isotopic fractionation to proteomic and metabolite profiles under different cellular energetic regimes. When energy availability is limited, cell-specific sulfate respiration rates and net sulfur isotope fractionation inversely covary. Beyond net S isotope fractionation values, we also quantified shifts in protein expression, abundances and isotopic composition of intracellular S metabolites, and lipid structures and lipid/water H isotope fractionation values. These coupled approaches reveal which protein abundances shift directly as a function of energy flux, those that vary minimally, and those that may vary independent of energy flux and likely do not contribute to shifts in S-isotope fractionation. By coupling the bulk S-isotope observations with quantitative proteomics, we provide novel constraints for metabolic isotope models. Together, these results lay the foundation for more predictive metabolic fractionation models, alongside interpretations of environmental sulfur and sulfate reducer lipid-H isotope data.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Isótopos de Azufre / Desulfovibrio vulgaris / Proteómica Idioma: En Revista: Geobiology Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Isótopos de Azufre / Desulfovibrio vulgaris / Proteómica Idioma: En Revista: Geobiology Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article