Your browser doesn't support javascript.
loading
Contemporary Assessment of Energy Degeneracy in Orbital Mixing with Tetravalent f-Block Compounds.
Pereiro, Felipe A; Galley, Shane S; Jackson, Jessica A; Shafer, Jenifer C.
Afiliación
  • Pereiro FA; Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, United States.
  • Galley SS; Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, United States.
  • Jackson JA; Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, United States.
  • Shafer JC; Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, United States.
Inorg Chem ; 63(21): 9687-9700, 2024 May 27.
Article en En | MEDLINE | ID: mdl-38743642
ABSTRACT
The f block is a comparatively understudied group of elements that find applications in many areas. Continued development of technologies involving the lanthanides (Ln) and actinides (An) requires a better fundamental understanding of their chemistry. Specifically, characterizing the electronic structure of the f elements presents a significant challenge due to the spatially core-like but energetically valence-like nature of the f orbitals. This duality led f-block scientists to hypothesize for decades that f-block chemistry is dominated by ionic metal-ligand interactions with little covalency because canonical covalent interactions require both spatial orbital overlap and orbital energy degeneracy. Recent studies on An compounds have suggested that An ions can engage in appreciable orbital mixing between An 5f and ligand orbitals, which was attributed to "energy-degeneracy-driven covalency". This model of bonding has since been a topic of debate because different computational methods have yielded results that support and refute the energy-degeneracy-driven covalency model. In this Viewpoint, literatures concerning the metal- and ligand-edge X-ray absorption near-edge structure (XANES) of five tetravalent f-block systems─MO2 (M = Ln, An), LnF4, MCl62-, and [Ln(NP(pip)3)4]─are compiled and discussed to explore metal-ligand bonding in f-block compounds through experimental metrics. Based on spectral assignments from a variety of theoretical models, covalency is seen to decrease from CeO2 and PrO2 to TbO2 through weaker ligand-to-metal charge-transfer (LMCT) interactions, while these LMCT interactions are not observed in the trivalent Ln sesquixodes until Yb. In comparison, while XANES characterization of AnO2 compounds is scarce, computational modeling of available X-ray absorption spectra suggests that covalency among AnO2 reaches a maximum between Am and Cm. Moreover, a decrease in covalency is observed upon changing ligands while maintaining an isostructural coordination environment from CeO2 to CeF4. These results could allude to the importance of orbital energy degeneracy in f-block bonding, but there are a variety of data gaps and conflicting results from different modeling techniques that need to be addressed before broad conclusions can be drawn.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2024 Tipo del documento: Article