Your browser doesn't support javascript.
loading
Atomistic mechanism of coupling between cytosolic sensor domain and selectivity filter in TREK K2P channels.
Türkaydin, Berke; Schewe, Marcus; Riel, Elena Barbara; Schulz, Friederike; Biedermann, Johann; Baukrowitz, Thomas; Sun, Han.
Afiliación
  • Türkaydin B; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
  • Schewe M; Insitute of Chemistry, Technical University of Berlin, Berlin, Germany.
  • Riel EB; Institute of Physiology, Kiel University, Kiel, Germany. m.schewe@physiologie.uni-kiel.de.
  • Schulz F; Institute of Physiology, Kiel University, Kiel, Germany.
  • Biedermann J; Department of Anesthesiology, Weill Cornell Medical College, New York, USA.
  • Baukrowitz T; Institute of Physiology, Kiel University, Kiel, Germany.
  • Sun H; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
Nat Commun ; 15(1): 4628, 2024 May 31.
Article en En | MEDLINE | ID: mdl-38821927
ABSTRACT
The two-pore domain potassium (K2P) channels TREK-1 and TREK-2 link neuronal excitability to a variety of stimuli including mechanical force, lipids, temperature and phosphorylation. This regulation involves the C-terminus as a polymodal stimulus sensor and the selectivity filter (SF) as channel gate. Using crystallographic up- and down-state structures of TREK-2 as a template for full atomistic molecular dynamics (MD) simulations, we reveal that the SF in down-state undergoes inactivation via conformational changes, while the up-state structure maintains a stable and conductive SF. This suggests an atomistic mechanism for the low channel activity previously assigned to the down state, but not evident from the crystal structure. Furthermore, experimentally by using (de-)phosphorylation mimics and chemically attaching lipid tethers to the proximal C-terminus (pCt), we confirm the hypothesis that moving the pCt towards the membrane induces the up-state. Based on MD simulations, we propose two gating pathways by which movement of the pCt controls the stability (i.e., conductivity) of the filter gate. Together, these findings provide atomistic insights into the SF gating mechanism and the physiological regulation of TREK channels by phosphorylation.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Activación del Canal Iónico / Canales de Potasio de Dominio Poro en Tándem / Simulación de Dinámica Molecular Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Activación del Canal Iónico / Canales de Potasio de Dominio Poro en Tándem / Simulación de Dinámica Molecular Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article