Your browser doesn't support javascript.
loading
Ultrafast high-endurance memory based on sliding ferroelectrics.
Yasuda, Kenji; Zalys-Geller, Evan; Wang, Xirui; Bennett, Daniel; Cheema, Suraj S; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo; Ashoori, Raymond.
Afiliación
  • Yasuda K; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.
  • Zalys-Geller E; School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA.
  • Wang X; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.
  • Bennett D; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.
  • Cheema SS; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
  • Watanabe K; Research Laboratory of Electronics, MA Institute of Technology, Cambridge, MA, USA.
  • Taniguchi T; Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan.
  • Kaxiras E; Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan.
  • Jarillo-Herrero P; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
  • Ashoori R; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
Science ; 385(6704): 53-56, 2024 Jul 05.
Article en En | MEDLINE | ID: mdl-38843354
ABSTRACT
The persistence of voltage-switchable collective electronic phenomena down to the atomic scale has extensive implications for area- and energy-efficient electronics, especially in emerging nonvolatile memory technology. We investigate the performance of a ferroelectric field-effect transistor (FeFET) based on sliding ferroelectricity in bilayer boron nitride at room temperature. Sliding ferroelectricity represents a different form of atomically thin two-dimensional (2D) ferroelectrics, characterized by the switching of out-of-plane polarization through interlayer sliding motion. We examined the FeFET device employing monolayer graphene as the channel layer, which demonstrated ultrafast switching speeds on the nanosecond scale and high endurance exceeding 1011 switching cycles, comparable to state-of-the-art FeFET devices. These characteristics highlight the potential of 2D sliding ferroelectrics for inspiring next-generation nonvolatile memory technology.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Science Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Science Año: 2024 Tipo del documento: Article