Your browser doesn't support javascript.
loading
Ixodes scapularis density and Borrelia burgdorferi prevalence along a residential-woodland gradient in a region of emerging Lyme disease risk.
Logan, James J; Knudby, Anders; Leighton, Patrick A; Talbot, Benoit; McKay, Roman; Ramsay, Tim; Blanford, Justine I; Ogden, Nicholas H; Kulkarni, Manisha A.
Afiliación
  • Logan JJ; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada. jtomp061@uottawa.ca.
  • Knudby A; Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, ON, Canada.
  • Leighton PA; Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.
  • Talbot B; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.
  • McKay R; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.
  • Ramsay T; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.
  • Blanford JI; Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.
  • Ogden NH; Department of Earth Observation Science, Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands.
  • Kulkarni MA; Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada.
Sci Rep ; 14(1): 13107, 2024 06 07.
Article en En | MEDLINE | ID: mdl-38849451
ABSTRACT
The environmental risk of Lyme disease, defined by the density of Ixodes scapularis ticks and their prevalence of Borrelia burgdorferi infection, is increasing across the Ottawa, Ontario region, making this a unique location to explore the factors associated with environmental risk along a residential-woodland gradient. In this study, we collected I. scapularis ticks and trapped Peromyscus spp. mice, tested both for tick-borne pathogens, and monitored the intensity of foraging activity by deer in residential, woodland, and residential-woodland interface zones of four neighbourhoods. We constructed mixed-effect models to test for site-specific characteristics associated with densities of questing nymphal and adult ticks and the infection prevalence of nymphal and adult ticks. Compared to residential zones, we found a strong increasing gradient in tick density from interface to woodland zones, with 4 and 15 times as many nymphal ticks, respectively. Infection prevalence of nymphs and adults together was 15 to 24 times greater in non-residential zone habitats. Ecological site characteristics, including soil moisture, leaf litter depth, and understory density, were associated with variations in nymphal density and their infection prevalence. Our results suggest that high environmental risk bordering residential areas poses a concern for human-tick encounters, highlighting the need for targeted disease prevention.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Enfermedad de Lyme / Bosques / Ixodes / Borrelia burgdorferi País/Región como asunto: America do norte Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Enfermedad de Lyme / Bosques / Ixodes / Borrelia burgdorferi País/Región como asunto: America do norte Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article