Your browser doesn't support javascript.
loading
Obese mice have decreased uterine contractility and altered energy metabolism in the uterus at term gestation†.
Prifti, Kevin K; McCarthy, Ronald; Ma, Xiaofeng; Finck, Brian N; England, Sarah K; Frolova, Antonina I.
Afiliación
  • Prifti KK; Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA.
  • McCarthy R; Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA.
  • Ma X; Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA.
  • Finck BN; Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO, USA.
  • England SK; Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA.
  • Frolova AI; Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA.
Biol Reprod ; 111(3): 678-693, 2024 Sep 14.
Article en En | MEDLINE | ID: mdl-38857377
ABSTRACT
Over 35% of reproductive-age women in the USA have obesity, putting them at increased risk for numerous obstetric complications due to abnormal labor. While the association between maternal obesity and abnormal labor has been well documented, the mechanisms responsible for this remain understudied. The uterine smooth muscle, myometrium, has high energy needs in order to fuel regular uterine contractions during parturition. However, the precise mechanisms by which the myometrium meets its energy demands has not been defined. Here, our objective was to define the effects of obesity on energy utilization in the myometrium during labor. We generated a mouse model of maternal diet-induced obesity and found that these mice had a higher rate of dystocia than control chow-fed mice. Moreover, compared to control chow-fed mice, DIO mice at term, both before and during labor had lower in vivo spontaneous uterine contractility. Untargeted transcriptomic and metabolomic analyses suggest that diet-induced obesity is associated with elevated long-chain fatty acid uptake and utilization in the uterus, but also an accumulation of medium-chain fatty acids. Diet-induced obesity uteri also had an increase in the abundance of long chain-specific beta-oxidation enzymes, which may be responsible for the observed increase in long-chain fatty acid utilization. This altered energy substrate utilization may be a contributor to the observed contractile dysfunction.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Contracción Uterina / Útero / Metabolismo Energético Idioma: En Revista: Biol Reprod Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Contracción Uterina / Útero / Metabolismo Energético Idioma: En Revista: Biol Reprod Año: 2024 Tipo del documento: Article