Your browser doesn't support javascript.
loading
Osteogenic Induction and Anti-Inflammatory Effects of Calcium-Chlorogenic Acid Nanoparticles Remodel the Osteoimmunology Microenvironment for Accelerating Bone Repair.
Liu, Qi; Zhang, Shuo; Shi, Lusen; Shi, Jiapei; Sun, Chunhui; Wang, Jingang; Zhou, Weijia; Zhou, Hengxing; Shan, Fengjuan; Wang, Hongli; Wang, Jie; Ren, Na; Feng, Shiqing; Liu, Hong; Wang, Shuping.
Afiliación
  • Liu Q; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China.
  • Zhang S; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China.
  • Shi L; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China.
  • Shi J; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China.
  • Sun C; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China.
  • Wang J; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China.
  • Zhou W; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China.
  • Zhou H; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China.
  • Shan F; Ji'nan Pantheum Biological Technology Limited Company, Jinan, 250100, P. R. China.
  • Wang H; Ji'nan Pantheum Biological Technology Limited Company, Jinan, 250100, P. R. China.
  • Wang J; Ji'nan Pantheum Biological Technology Limited Company, Jinan, 250100, P. R. China.
  • Ren N; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China.
  • Feng S; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China.
  • Liu H; The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250033, P. R. China.
  • Wang S; Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P. R. China.
Adv Healthc Mater ; : e2401114, 2024 Jun 17.
Article en En | MEDLINE | ID: mdl-38885954
ABSTRACT
Successful bone regeneration requires close cooperation between bone marrow mesenchymal stem cells (BMSCs) and macrophages, but the low osteogenic differentiation efficiency of stem cells and the excessive inflammatory response of immune cells hinder the development of bone repair. It is necessary to develop a strategy that simultaneously regulates the osteogenic differentiation of BMSCs and the anti-inflammatory polarization of macrophages for accelerating the bone regeneration. Herein, calcium-chlorogenic acid nanoparticles (Ca-CGA NPs) are synthesized by combining the small molecules of chlorogenic acid (CGA) with Ca2+. Ca-CGA NPs internalized by cells can be dissolved to release free CGA and Ca2+ under low pH conditions in lysosomes. In vitro results demonstrate that Ca-CGA NPs can not only enhance the osteogenic differentiation of BMSCs but also promote the phenotype transformation of macrophages from M1 to M2. Furthermore, in vivo experiments confirm that Ca-CGA NPs treatment facilitates the recovery of rat skull defect model through both osteoinduction and immunomodulation. This study develops a new Ca-CGA NPs-based strategy to induce the differentiation of BMSCs into osteoblasts and the polarization of macrophages into M2 phenotype, which is promising for accelerating bone repair.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Adv Healthc Mater Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Adv Healthc Mater Año: 2024 Tipo del documento: Article