Your browser doesn't support javascript.
loading
Mosquito population dynamics is shaped by the interaction among larval density, season, and land use.
Solano, Nicole; Herring, Emily C; Hintz, Carl W; Newberry, Philip M; Schatz, Annakate M; Walker, Joseph W; Osenberg, Craig W; Murdock, Courtney C.
Afiliación
  • Solano N; Odum School of Ecology, University of Georgia, Athens, GA, USA.
  • Herring EC; Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
  • Hintz CW; Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
  • Newberry PM; Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA.
  • Schatz AM; Odum School of Ecology, University of Georgia, Athens, GA, USA.
  • Walker JW; Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
  • Osenberg CW; Odum School of Ecology, University of Georgia, Athens, GA, USA.
  • Murdock CC; Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
bioRxiv ; 2024 Jun 10.
Article en En | MEDLINE | ID: mdl-38915528
ABSTRACT
Understanding how variation in key abiotic and biotic factors interact at spatial scales relevant for mosquito fitness and population dynamics is crucial for predicting current and future mosquito distributions and abundances, and the transmission potential for human pathogens. However, studies investigating the effects of environmental variation on mosquito traits have investigated environmental factors in isolation or in laboratory experiments that examine constant environmental conditions that often do not occur in the field. To address these limitations, we conducted a semi-field experiment in Athens, Georgia using the invasive Asian tiger mosquito (Aedes albopictus). We selected nine sites that spanned natural variation in impervious surface and vegetation cover to explore effects of the microclimate (temperature and humidity) on mosquitoes. On these sites, we manipulated conspecific larval density at each site. We repeated the experiment in the summer and fall. We then evaluated the effects of land cover, larval density, and time of season, as well as interactive effects, on the mean proportion of females emerging, juvenile development time, size upon emergence, and predicted per capita population growth (i.e., fitness). We found significant effects of larval density, land cover, and season on all response variables. Of most note, we saw strong interactive effects of season and intra-specific density on each response variable, including a non-intuitive decrease in development time with increasing intra-specific competition in the fall. Our study demonstrates that ignoring the interaction between variation in biotic and abiotic variables could reduce the accuracy and precision of models used to predict mosquito population and pathogen transmission dynamics, especially those inferring dynamics at finer-spatial scales across which transmission and control occur.
RESUMEN
Para poder predecir la distribución y abundancia de las poblaciones de mosquitos y la transmisión potencial de patógenos a humanos, es crucial comprender cómo factores abióticos y bióticos clave para el éxito reproductivo y la dinámica poblacional de los mosquitos interactúan a escalas relevantes. Sin embargo, los estudios que han investigado los efectos de variables ambientales en las características demográficas de los mosquitos han considerado su efecto de forma aislada o en experimentos de laboratorio bajo condiciones ambientales constantes que, a menudo, no reflejan lo que ocurre en el campo. Para abordar estas limitaciones, llevamos a cabo un experimento de semi-campo en Athens, Georgia, utilizando el mosquito invasor tigre asiático (Aedes albopictus). Seleccionamos nueve sitios que abarcaban variaciones naturales en la superficie impermeable y cobertura vegetal para explorar los efectos del microclima (temperatura y humedad) en los mosquitos. También manipulamos la densidad de larvas de tigre asiático en dos experimentos que fueron realizados en el verano y otoño. Evaluamos los efectos de la cobertura vegetal, la densidad de larvas, la temporada climática, y la interacción entre estas variables en la proporción de hembras que emergieron, el tiempo de desarrollo de las larvas, el tamaño al momento de la emergencia, y el crecimiento demográfico per cápita previsto (éxito reproductivo). Encontramos efectos significativos de la densidad de larvas, la variación de la cobertura vegetal y la estación del año en todas las variables de respuesta. Más notablemente, observamos un fuerte efecto de la interacción entre la temporada climática y la densidad de larvas en todas las variables de respuesta, incluyendo una disminución no intuitiva en el tiempo de desarrollo con el aumento de la competencia intraespecífica en el otoño. Nuestro estudio evidencia que ignorar la interacción entre variables abióticas y bióticas podría reducir la exactitud y precisión de los modelos utilizados para predecir las dinámicas de las poblaciones de mosquitos, y por tanto, de la transmisión de patógenos. Esto, especialmente en modelos que infieren estas dinámicas a escalas espaciales más finas, en las cuales ocurre la transmisión y el control.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article