Your browser doesn't support javascript.
loading
An efficient preparation process of sisal fibers via the specialized retting microorganisms: Based on the ideal combination of degumming-related enzymes for the effective removal of non-cellulosic macromolecules.
Huang, Linru; Peng, Jieying; Tan, Minghui; Fang, Jianhao; Li, Kuntai.
Afiliación
  • Huang L; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong, Province Engineering Laboratory for Marine Bio
  • Peng J; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong, Province Engineering Laboratory for Marine Bio
  • Tan M; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong, Province Engineering Laboratory for Marine Bio
  • Fang J; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong, Province Engineering Laboratory for Marine Bio
  • Li K; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong, Province Engineering Laboratory for Marine Bio
Int J Biol Macromol ; 274(Pt 2): 133416, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38925202
ABSTRACT
Bioaugmentation retting with the specialized pectinolytic and xylanolytic microorganisms can accelerate the removal of non-cellulosic macromolecules around plant fibers, thus shortening retting time and facilitating fiber quality. Currently, few specialized microorganisms have been explored for the retting of sisal fibers. The present study excavated the retting fungi including Aspergillus micronesiensis HD 3-6, Penicillium citrinum HD 3-12-3, and Cladosporium sp. HD 4-13 from the region-specific soil samples of planting sisal, and investigated their bioaugmentation retting effects on raw sisal leaves. Results showed that combination of the three fungi achieved the most excellent degumming efficiency (13.69 % of residual gum in sisal fibers) and the highest fiber yield (4.47 %). Furthermore, this fungi combination had the ideal enzymatic hydrolysis features with high activities of pectinase, xylanase and mannanase whereas a low activity of cellulase during the whole retting process, thus endowing the prepared sisal fibers with the lowest mass percentage of non-cellulosic macromolecules (9.76 wt%) and the highest cellulose content (89.23 wt%). SEM and FT-IR analysis further verified that the non-cellulosic substances around sisal fibers were efficiently removed. In summary, the consortia of the three fungi achieved ideal degumming-related enzymes for the removal of non-cellulosic macromolecules, thus acquiring the efficient preparation of sisal fibers.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Sasa Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Sasa Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article