Your browser doesn't support javascript.
loading
Morphological observation, molecular identification and evolutionary analysis of Hydatigera kamiyai found in Neodon fuscus from the Qinghai-Tibetan plateau.
Zhou, Guoyan; Zhang, Haining; Chen, Wangkai; Li, Zhi; Zhang, Xueyong; Fu, Yong.
Afiliación
  • Zhou G; Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China.
  • Zhang H; Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China.
  • Chen W; Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China.
  • Li Z; Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China.
  • Zhang X; Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China.
  • Fu Y; Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China. Electronic address: qhf
Infect Genet Evol ; 123: 105629, 2024 Jun 25.
Article en En | MEDLINE | ID: mdl-38936527
ABSTRACT
Hydatigera kamiyai (H. kamiyai) is a new species within Hydatigera that has recently been resurrected. Voles and cats are hosts of H. kamiyai and have a certain impact on its health and economy. Moreover, the Qinghai-Tibetan plateau (QTP) is a research hotspot representing Earth's biodiversity, as its unique geographical environment and climatic conditions support the growth of a variety of mammals and provide favorable conditions for various parasites to complete their life history. The aim of this study was to reveal the phylogenetic relationships and divergence times of H. kamiyai strains isolated from Neodon fuscus on the QTP using morphological and molecular methods. In this study, we morphologically observed H. kamiyai and sequenced the whole mitochondrial genome. Then, we constructed phylogenetic trees with the maximum likelihood (ML) and Bayesian inference (BI) methods. The GTR alternative model was selected for divergence time analysis. These data demonstrated that the results were consistent with the general morphological characteristics of Hydatigera. The whole genome of H. kamiyai was 13,822 bp in size, and the A + T content (73%) was greater than the G + C content (27%). The Ka/Ks values were all <1, indicating that all 13 protein-coding genes (13 PCGs) underwent purifying selection during the process of evolution. The phylogenetic tree generated based on the 13 PCGs, cytochrom oxidase subunit I (COI), 18S rRNA and 28S rRNA revealed close phylogenetic relationships between H. kamiyai and Hydatigera, with high node support for the relationship. The divergence time based on 13 PCGs indicated that H. kamiyai diverged approximately 11.3 million years ago (Mya) in the Miocene. Interestingly, it diverged later than the period of rapid uplift in the QTP. We also speculated that H. kamiyai differentiation was caused by host differentiation due to the favorable living conditions brought about by the uplift of the QTP. As there have been relatively few investigations on the mitochondrial genome of H. kamiyai, our study could provide factual support for further studies of H. kamiyai on the QTP. We also emphasized the importance of further studies of its hosts, Neodon fuscus and cats, which will be important for further understanding the life cycle of H. kamiyai.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Infect Genet Evol Asunto de la revista: BIOLOGIA / DOENCAS TRANSMISSIVEIS / GENETICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Infect Genet Evol Asunto de la revista: BIOLOGIA / DOENCAS TRANSMISSIVEIS / GENETICA Año: 2024 Tipo del documento: Article