Your browser doesn't support javascript.
loading
Anomalous Interlayer Exciton Diffusion in WS2/WSe2 Moiré Heterostructure.
Rossi, Antonio; Zipfel, Jonas; Maity, Indrajit; Lorenzon, Monica; Dandu, Medha; Barré, Elyse; Francaviglia, Luca; Regan, Emma C; Zhang, Zuocheng; Nie, Jacob H; Barnard, Edward S; Watanabe, Kenji; Taniguchi, Takashi; Rotenberg, Eli; Wang, Feng; Lischner, Johannes; Raja, Archana; Weber-Bargioni, Alexander.
Afiliación
  • Rossi A; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Zipfel J; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Maity I; Center for Nanotechnology Innovation @ NEST, Instituto Italiano di Tecnologia, 56127 Pisa, Italy.
  • Lorenzon M; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Dandu M; Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
  • Barré E; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Francaviglia L; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Regan EC; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Zhang Z; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Nie JH; Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.
  • Barnard ES; Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.
  • Watanabe K; Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.
  • Taniguchi T; Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, United States.
  • Rotenberg E; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Wang F; Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0047, Japan.
  • Lischner J; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0047, Japan.
  • Raja A; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Weber-Bargioni A; Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.
ACS Nano ; 18(28): 18202-18210, 2024 Jul 16.
Article en En | MEDLINE | ID: mdl-38950893
ABSTRACT
Stacking van der Waals crystals allows for the on-demand creation of a periodic potential landscape to tailor the transport of quasiparticle excitations. We investigate the diffusion of photoexcited electron-hole pairs, or excitons, at the interface of WS2/WSe2 van der Waals heterostructure over a wide range of temperatures. We observe the appearance of distinct interlayer excitons for parallel and antiparallel stacking and track their diffusion through spatially and temporally resolved photoluminescence spectroscopy from 30 to 250 K. While the measured exciton diffusivity decreases with temperature, it surprisingly plateaus below 90 K. Our observations cannot be explained by classical models like hopping in the moiré potential. A combination of ab initio theory and molecular dynamics simulations suggests that low-energy phonons arising from the mismatched lattices of moiré heterostructures, also known as phasons, play a key role in describing and understanding this anomalous behavior of exciton diffusion. Our observations indicate that the moiré potential landscape is dynamic down to very low temperatures and that the phason modes can enable efficient transport of energy in the form of excitons.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article