Prognostic prediction model for salivary gland carcinoma based on machine learning.
Int J Oral Maxillofac Surg
; 53(11): 905-910, 2024 Nov.
Article
en En
| MEDLINE
| ID: mdl-38981745
ABSTRACT
Although rare overall, salivary gland carcinomas (SGCs) are among the most common oral and maxillofacial malignancies. The aim of this study was to develop a machine learning-based model to predict the survival of patients with SGC. Patients in whom SGC was confirmed by histological testing and who underwent primary extirpation at the authors' institution between 1963 and 2014 were identified. Demographic and clinicopathological data with complete follow-up information were collected for analysis. Feature selection methods were used to determine the correlation between prognosis-related factors and survival in the collected patient data. The collected clinicopathological data and multiple machine learning algorithms were used to develop a survival prediction model. Three machine learning algorithms were applied to construct the prediction models. The area under the receiver operating characteristic curve (AUC) and accuracy were used to measure model performance. The best classification performance was achieved with a LightGBM algorithm (AUC = 0.83, accuracy = 0.91). This model enabled prognostic prediction of patient survival. The model may be useful in developing personalized diagnostic and treatment strategies and formulating individualized follow-up plans, as well as assisting in the communication between doctors and patients, facilitating a better understanding of and compliance with treatment.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Neoplasias de las Glándulas Salivales
/
Aprendizaje Automático
Idioma:
En
Revista:
Int J Oral Maxillofac Surg
Asunto de la revista:
ODONTOLOGIA
Año:
2024
Tipo del documento:
Article